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Applications 
Ø  Electronic circuits 

q  Printed circuit board 

q  Integrated circuit 

Ø  Transportation networks 
q  Highway network 

q  Flight network 

Ø  Computer networks 
q  Local area network 

q  Internet 

q Web 

Ø  Databases 
q  Entity-relationship diagram 
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Edge Types 
Ø  Directed edge 

q  ordered pair of vertices (u,v) 

q  first vertex u is the origin 

q  second vertex v is the destination 

q  e.g., a flight 

Ø  Undirected edge 
q  unordered pair of vertices (u,v) 

q  e.g., a flight route 

Ø  Directed graph (Digraph) 
q  all the edges are directed 

q  e.g., route network 

Ø  Undirected graph 
q  all the edges are undirected 

q  e.g., flight network 
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Vertices and Edges 
Ø  End vertices (or endpoints) of 

an edge 
q  U and V are the endpoints of a 

Ø  Edges incident on a vertex 
q  a, d, and b are incident on V 

Ø  Adjacent vertices 
q  U and V are adjacent 

Ø  Degree of a vertex 
q  X has degree 5  

Ø  Parallel edges 
q  h and i are parallel edges 

Ø  Self-loop 
q  j is a self-loop 
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Graphs  
Ø  A graph is a pair (V, E), where 

q  V is a set of nodes, called vertices 

q  E is a collection of pairs of vertices, called edges 

q  Vertices and edges are positions and store elements 

Ø  Example: 
q  A vertex represents an airport and stores the three-letter airport code 

q  An edge represents a flight route between two airports and stores the 
mileage of the route 
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P1 

Paths 

Ø  Path 
q  sequence of alternating 

vertices and edges  

q  begins with a vertex 

q  ends with a vertex 

q  each edge is preceded and 
followed by its endpoints 

Ø  Simple path 
q  path such that all its vertices 

and edges are distinct 

Ø  Examples 
q  P1=(V,b,X,h,Z) is a simple path 

q  P2=(U,c,W,e,X,g,Y,f,W,d,V) is a 
path that is not simple 
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Cycles 

Ø  Cycle 
q  circular sequence of alternating 

vertices and edges  

q  each edge is preceded and 
followed by its endpoints 

Ø  Simple cycle 
q  cycle such that all its vertices 

and edges are distinct 

Ø  Examples 
q  C1=(V,b,X,g,Y,f,W,c,U,a,↵) is a 

simple cycle 

q  C2=(U,c,W,e,X,g,Y,f,W,d,V,a,↵) 
is a cycle that is not simple 
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Subgraphs 

Ø A subgraph S of a graph 
G is a graph such that  
q The vertices of S are a 

subset of the vertices of G 

q The edges of S are a 
subset of the edges of G 

Ø A spanning subgraph of 
G is a subgraph that 
contains all the vertices of 
G 

Subgraph 

Spanning subgraph 



Last Updated:  12-03-22 10:12 AM 
CSE 2011 
Prof. J. Elder - 9 - 

Connectivity 
Ø A graph is connected if 

there is a path between 
every pair of vertices 

Ø A connected component 
of a graph G is a maximal 
connected subgraph of G 

Connected graph 

Non connected graph with two 
connected components 
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Trees 

Tree Forest Graph with Cycle 

A tree is a connected, acyclic, undirected graph. 

A forest is a set of trees (not necessarily connected) 
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Spanning Trees  

Ø  A spanning tree of a connected 
graph is a spanning subgraph that 
is a tree 

Ø  A spanning tree is not unique 
unless the graph is a tree 

Ø  Spanning trees have applications 
to the design of communication 
networks 

Ø  A spanning forest of a graph is a 
spanning subgraph that is a forest 

Graph 

Spanning tree 
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Reachability in Directed Graphs 
Ø A node w is reachable from v if there is a directed path 

originating at v and terminating at w. 
q   E is reachable from B 

q B is not reachable from E 
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Properties 

Notation 
   |V|  number of vertices 

   |E|  number of edges 

deg(v)  degree of vertex v 

Property 1 

Σv deg(v) = 2|E| 

Proof: each edge is counted 
twice 

Property 2 
In an undirected graph with no 

self-loops and no multiple 
edges 

   |E| ≤ |V| (|V| - 1)/2 

Proof: each vertex has degree 
at most (|V| – 1) 

Example 
n  |V| = 4 
n  |E| = 6 
n  deg(v) = 3 

  
A :  E ≤ V (V −1)
Q:  What is the bound for a digraph? 
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Main Methods of the (Undirected) Graph ADT 
Ø Vertices and edges 

q are positions 
q store elements 

Ø Accessor methods 
q endVertices(e): an array of the 

two endvertices of e 
q opposite(v, e): the vertex 

opposite to v on e 
q areAdjacent(v, w): true iff v and 

w are adjacent 
q replace(v, x): replace element at 

vertex v with x 
q replace(e, x): replace element at 

edge e with x 

Ø Update methods 
q  insertVertex(o): insert a vertex 

storing element o 
q  insertEdge(v, w, o): insert an 

edge (v,w) storing element o 
q removeVertex(v): remove vertex 

v (and its incident edges) 
q removeEdge(e): remove edge e 

Ø  Iterator methods 
q  incidentEdges(v): edges 

incident to v 
q vertices(): all vertices in the 

graph 
q edges(): all edges in the graph 
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Directed Graph ADT 

Ø Additional methods: 
q  isDirected(e): return true if e is a directed edge 
q  insertDirectedEdge(v, w, o): insert and return a new directed 

edge with origin v and destination w, storing element o 
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Running Time of Graph Algorithms 

Ø Running time often a function of both |V| and |E|. 

Ø  For convenience, we sometimes drop the | . | in 
asymptotic notation, e.g. O(V+E). 



Last Updated:  12-03-22 10:12 AM 
CSE 2011 
Prof. J. Elder - 17 - 

Implementing a Graph (Simplified) 

Adjacency List Adjacency Matrix 

Space complexity:

Time to find all neighbours of vertex :u

Time to determine if ( , ) :  ∈u v E

( )θ +V E

(degree( ))θ u

(degree( ))θ u

2( )θ V
( )θ V

(1)θ
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Representing Graphs (Details) 

Ø  Three basic methods 
q Edge List 

q Adjacency List 

q Adjacency Matrix 
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Edge List Structure  
Ø  Vertex object 

q  element 

q  reference to position in vertex 
sequence 

Ø  Edge object 
q  element 

q  origin vertex object 

q  destination vertex object 

q  reference to position in edge 
sequence 

Ø  Vertex sequence 
q  sequence of vertex objects 

Ø  Edge sequence 
q  sequence of edge objects 
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Adjacency List Structure  

Ø  Edge list structure 
Ø  Incidence sequence for 

each vertex 
q  sequence of references to 

edge objects of incident 
edges 

Ø  Augmented edge objects 
q  references to associated 

positions in incidence 
sequences of end vertices 

u 
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w 
a b 
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u v w 
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Adjacency Matrix Structure 
Ø  Edge list structure 
Ø  Augmented vertex 

objects 
q  Integer key (index) 

associated with vertex 

Ø  2D-array adjacency 
array 
q  Reference to edge 

object for adjacent 
vertices 

q  Null for non- 
nonadjacent vertices 

u 
v 

w 
a b 

0 1 2 

0 Ø Ø 

1 Ø 

2 Ø Ø a 

u v w 0 1 2 

b 
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Asymptotic Performance  
(assuming collections V and E represented as 

doubly-linked lists) 
"  |V| vertices, |E| edges 
"  no parallel edges 
"  no self-loops 
"  Bounds are “big-Oh” 

Edge 
List 

Adjacency 
List 

Adjacency 
Matrix 

Space |V|+|E| |V|+|E| |V|2 

incidentEdges(v) |E| deg(v) |V| 
areAdjacent (v, w) |E| min(deg(v), deg(w)) 1 
insertVertex(o) 1 1 |V|2 

insertEdge(v, w, o) 1 1 1 
removeVertex(v) |E| deg(v) |V|2 
removeEdge(e) 1 1 1 
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Graph Search Algorithms 
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Depth First Search (DFS) 
Ø  Idea: 

q Continue searching “deeper” into the graph, until we get 
stuck.  

q  If all the edges leaving v have been explored we “backtrack” 
to the vertex from which v  was discovered.  

q Analogous to Euler tour for trees 

Ø Used to help solve many graph problems, including 
q Nodes that are reachable from a specific node v 
q Detection of cycles 

q Extraction of strongly connected components 

q Topological sorts 
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Depth-First Search 
Ø  The DFS algorithm is 

similar to a classic 
strategy for exploring a 
maze 
q We mark each 

intersection, corner and 
dead end (vertex) visited 

q We mark each corridor 
(edge ) traversed 

q We keep track of the path 
back to the entrance 
(start vertex) by means of 
a rope (recursion stack) 
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Depth-First Search 

Ø  Explore every edge, starting from different vertices if necessary. 

Ø  As soon as vertex discovered, explore from it. 

Ø  Keep track of progress by colouring vertices: 
q  Black:  undiscovered vertices 

q  Red:  discovered, but not finished (still exploring from it) 

q Gray: finished (found everything reachable from it). 

Graph ( , ) (directed or In undirectep : )t du   G V E=
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DFS Example on Undirected Graph 
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Example (cont.) 
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DFS Algorithm Pattern 

  

DFS(G)
Precondition: G is a graph
Postcondition: all vertices in G have been visited

for each vertex u∈V [G] 
color[u] = BLACK //initialize vertex

for each vertex u∈V [G] 
if color[u] = BLACK //as yet unexplored

DFS-Visit(u)
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DFS Algorithm Pattern 

  

DFS-Visit (u)
Precondition: vertex u is undiscovered
Postcondition: all vertices reachable from u have been processed

colour[u] ←  RED
for each v ∈Adj[u] //explore edge (u,v)

if color[v ] = BLACK
DFS-Visit(v)

colour [u]←GRAY
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Properties of DFS 

Property 1 
 DFS-Visit(u) visits all the 
vertices and edges in the 
connected component of u 

Property 2 
 The discovery edges 
labeled by DFS-Visit(u) 
form a spanning tree of the 
connected component of u 

D B 

A 

C 

E 
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DFS Algorithm Pattern 

  

DFS(G)
Precondition: G is a graph
Postcondition: all vertices in G have been visited

for each vertex u∈V [G] 
color[u] = BLACK //initialize vertex

for each vertex u∈V [G] 
if color[u] = BLACK //as yet unexplored

DFS-Visit(u)

  

total work 
=  θ(V )
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DFS Algorithm Pattern 

  

DFS-Visit (u)
Precondition: vertex u is undiscovered
Postcondition: all vertices reachable from u have been processed

colour[u] ←  RED
for each v ∈Adj[u] //explore edge (u,v)

if color[v ] = BLACK
DFS-Visit(v)

colour [u]←GRAY
  

total work 
=  |Adj[v]|

v∈V
∑ = θ(E)

  

Thus running time = θ(V + E)
(assuming adjacency list structure)
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Variants of Depth-First Search 
Ø  In addition to, or instead of labeling vertices with colours, they can be 

labeled with discovery and finishing times. 

Ø  ‘Time’ is an integer that is incremented whenever a vertex changes state 
q  from unexplored to discovered 

q  from discovered to finished 

Ø  These discovery and finishing times can then be used to solve other 
graph problems (e.g., computing strongly-connected components) 

Graph ( , ) (directed or In undirectep : )t du   G V E=

2 timestamps on each vertex:
  [ ] discovery time.
  [ ] finishing tim

Output

.

:  

e
d v
f v

=
=

1 [ ] [ ] 2| |d v f v V≤ < ≤
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DFS Algorithm with Discovery and Finish Times 

  

DFS(G)
Precondition: G is a graph
Postcondition: all vertices in G have been visited

for each vertex u∈V [G] 
color[u] = BLACK //initialize vertex

time ← 0
for each vertex u∈V [G] 

if color[u] = BLACK //as yet unexplored
DFS-Visit(u)
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DFS-Visit (u)
Precondition: vertex u is undiscovered
Postcondition: all vertices reachable from u have been processed

colour[u] ←  RED
time ← time +1
d[u]← time
for each v ∈Adj[u] //explore edge (u,v)

if color[v ] = BLACK
DFS-Visit(v)

colour [u]←GRAY
time ← time +1
f [u]← time

DFS Algorithm with Discovery and Finish Times 



Last Updated:  12-03-22 10:12 AM 
CSE 2011 
Prof. J. Elder - 37 - 

Other Variants of Depth-First Search 

Ø  The DFS Pattern can also be used to  
q Compute a forest of spanning trees (one for each call to DFS-

visit) encoded in a predecessor list π[u] 

q Label edges in the graph according to their role in the search 
(see textbook) 
² Tree edges, traversed to an undiscovered vertex 

² Forward edges, traversed to a descendent vertex on the current 
spanning tree 

² Back edges, traversed to an ancestor vertex on the current 
spanning tree 

² Cross edges, traversed to a vertex that has already been 
discovered, but is not an ancestor or a descendent 
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End of Lecture 

Tuesday, Mar 20, 2012 
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Example DFS on Directed Graph 
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DFS 
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Note:  Stack is Last-In First-Out (LIFO) 
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DFS 
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DFS 
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DFS 
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DFS 
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DFS 
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DFS 
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DFS 
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DFS 
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DFS 
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DFS 
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DFS 
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DFS 
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Classification of Edges in DFS 
1.  Tree edges are edges in the depth-first forest Gπ. Edge (u, v) is a tree edge if 

v  was first discovered by exploring edge (u, v). 

2.  Back edges are those edges (u, v) connecting a vertex u to an ancestor v in a 
depth-first tree. 

3.  Forward edges are non-tree edges (u, v) connecting a vertex u to a 
descendant v in a depth-first tree. 

4.  Cross edges are all other edges. They can go between vertices in the same 
depth-first tree, as long as one vertex is not an ancestor of the other. 
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Classification of Edges in DFS 
1.  Tree edges:  Edge (u, v) is a tree edge if v was black when (u, v) traversed. 

2.  Back edges: (u, v) is a back edge if v was red when (u, v) traversed. 

3.  Forward edges: (u, v) is a forward edge if v was gray when (u, v) traversed 
and d[v] > d[u]. 

4.  Cross edges (u,v) is a cross edge if v was gray when (u, v) traversed and 
d[v] < d[u]. 
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Classifying edges can help to identify  
properties of the graph, e.g., a graph is  
acyclic iff DFS yields no back edges. 
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DFS on Undirected Graphs 

Ø  In a depth-first search of an undirected graph, every 
edge is either a tree edge or a back edge. 

Ø Why? 
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DFS on Undirected Graphs 
Ø  Suppose that (u,v) is a forward edge or a 

cross edge in a DFS of an undirected graph. 

Ø  (u,v) is a forward edge or a cross edge when v 
is already handled (grey) when accessed from 
u. 

Ø  This means that all vertices reachable from v 
have been explored.  

Ø  Since we are currently handling u, u must be red. 

Ø  Clearly v is reachable from u. 

Ø  Since the graph is undirected, u must also be 
reachable from v. 

Ø  Thus u must already have been handled:  u must 
be grey. 

Ø  Contradiction! 

u 

v 
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Applications of Depth-First Search 
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DFS Application 1:  Path Finding 

  

DFS-Path (u,z)
Precondition: u and z are vertices in a graph
Postcondition: a path from u to z is returned, if one exists

colour[u] ←  RED
push u onto stack
if u = z

return list of elements on stack
for each v ∈Adj[u] //explore edge (u,v)

if color[v ] = BLACK
DFS-Path(v,z)

colour [u]←GRAY
pop u from stack

Ø  The DFS pattern can be used to find a path between two given vertices u and z, 
if one exists 

Ø  We use a stack to keep track of the current path 

Ø  If the destination vertex z is encountered, we return the path as the contents of 
the stack  
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DFS Application 2:  Cycle Finding 

  

DFS-Cycle (u)
Precondition: u is a vertex in a graph G
Postcondition: a cycle reachable from u is returned, of one exists

colour[u] ←  RED
push u onto stack
for each v ∈Adj[u] //explore edge (u,v)

if color[v] = RED //back edge
return top of stack down to v

else if color[v ] = BLACK
DFS-Cycle(v)

colour [u]←GRAY
pop u from stack

Ø  The DFS pattern can be used to find a cycle in a graph, if one exists 
Ø  We use a stack to keep track of the current path 

Ø  If a back edge is encountered, we return the cycle as the contents of the stack  
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Why must DFS on a graph with a cycle 
generate a back edge? 

Ø  Suppose that vertex s is in a connected 
component S that contains a cycle C. 

Ø  Since all vertices in S are reachable from 
s, they will all be visited by a DFS from s. 

Ø  Let v be the first vertex in C reached by a 
DFS from s. 

Ø  There are two vertices u and w adjacent 
to v on the cycle C. 

Ø  wlog, suppose u is explored first. 

Ø  Since w is reachable from u, w will 
eventually be discovered. 

Ø  When exploring w’s adjacency list, the 
back-edge (w, s) will be discovered. 

s 

v 

u w 
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DFS Application 3. Topological Sorting  
(e.g., putting tasks in linear order) 

Note:  The textbook also describes a breadth-
first TopologicalSort algorithm (Section 13.4.3) 
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DAGs and Topological Ordering 
Ø  A directed acyclic graph (DAG) is a 

digraph that has no directed cycles 

Ø  A topological ordering of a digraph 
is a numbering  

 v1 , …, vn  

 of the vertices such that for every 
edge (vi , vj), we have i < j 

Ø  Example: in a task scheduling 
digraph, a topological ordering is a 
task sequence that satisfies the 
precedence constraints 

Theorem 

 A digraph admits a topological 
ordering if and only if it is a DAG 

B 

A 

D 

C 

E 

DAG G 

B 

A 

D 

C 

E 

Topological 
ordering of G 

v1 

v2 

v3 

v4 v5 
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Topological (Linear) Order 

underwear 
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socks 

shoes 

underwear 
pants 
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underwear 
pants 
shoes 
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Topological  (Linear) Order 
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Invalid 
Order 



Last Updated:  12-03-22 10:12 AM 
CSE 2011 
Prof. J. Elder - 96 - 

Ø Note: This algorithm is different than the one 
in Goodrich-Tamassia 

 

Algorithm for Topological Sorting 

Method TopologicalSort(G) 
      H  G  // Temporary copy of G 
      n  G.numVertices() 
      while H is not empty do 

  Let v be a vertex with no outgoing edges 
  Label v  n 
  n  n - 1 
  Remove v from H //as well as edges involving v 
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Linear Order 

a 

b h 
c i 
d j 
e k 

f l 

g 

Pre-Condition:  
   A Directed Acyclic Graph 
     (DAG) 

Post-Condition: 
    Find one valid linear order 

Algorithm:  
• Find a terminal node (sink). 
• Put it last in sequence. 
• Delete from graph & repeat 
 

…..  l Can we do better? 
  
Running time: i

i=1

V

∑ = O V
2( )

O(|V|) 
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Linear Order 

a 

b h 
c i 
d j 
e k 

f 

g 

Found 
Not Handled 

Stack  

Alg: DFS 

d 
e 
g 
f 

l 

…..  f 
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Linear Order 

a 

b h 
c i 
d j 
e k 

f 

g 

Found 
Not Handled 

Stack  

Alg: DFS 

d 
e 
g 
l 

l 
When node is popped off stack, insert at front of linearly-ordered “to do” list. 

…..  f 
Linear Order: 
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Linear Order 

a 

b h 
c i 
d j 
e k 

f 

g 

Found 
Not Handled 

Stack  

Alg: DFS 

d 
e 
g 

l 

l,f 
Linear Order: 
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Linear Order 

a 

b h 
c i 
d j 
e k 

f 

g 

Found 
Not Handled 

Stack  

Alg: DFS 

d 
e l 

g,l,f 
Linear Order: 
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Linear Order 

a 

b h 
c i 
d j 
e k 

f 

g 

Found 
Not Handled 

Stack  

Alg: DFS 

d l 

e,g,l,f 
Linear Order: 
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Linear Order 

a 

b h 
c i 
d j 
e k 

f 

g 

Found 
Not Handled 

Stack  

Alg: DFS 

l 

d,e,g,l,f 
Linear Order: 
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Linear Order 

a 

b h 
c i 
d j 
e k 

f 

g 

Found 
Not Handled 

Stack  

Alg: DFS 

i l 

d,e,g,l,f 

j 
k 

Linear Order: 
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Linear Order 

a 

b h 
c i 
d j 
e k 

f 

g 

Found 
Not Handled 

Stack  

Alg: DFS 

i l 

k,d,e,g,l,f 

j 

Linear Order: 
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Linear Order 

a 

b h 
c i 
d j 
e k 

f 

g 

Found 
Not Handled 

Stack  

Alg: DFS 

i l 

j,k,d,e,g,l,f Linear Order: 
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Linear Order 

a 

b h 
c i 
d j 
e k 

f 

g 

Found 
Not Handled 

Stack  

Alg: DFS 

l 

i,j,k,d,e,g,l,f Linear Order: 
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Linear Order 

a 

b h 
c i 
d j 
e k 

f 

g 

Found 
Not Handled 

Stack  

Alg: DFS 

b l 
c 

i,j,k,d,e,g,l,f Linear Order: 
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Linear Order 

a 

b h 
c i 
d j 
e k 

f 

g 

Found 
Not Handled 

Stack  

Alg: DFS 

b l 

c,i,j,k,d,e,g,l,f Linear Order: 
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Linear Order 

a 

b h 
c i 
d j 
e k 

f 

g 

Found 
Not Handled 

Stack  

Alg: DFS 

l 

b,c,i,j,k,d,e,g,l,f Linear Order: 
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Linear Order 

a 

b h 
c i 
d j 
e k 

f 

g 

Found 
Not Handled 

Stack  

Alg: DFS 

a l 
h 

b,c,i,j,k,d,e,g,l,f Linear Order: 
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Linear Order 

a 

b h 
c i 
d j 
e k 

f 

g 

Found 
Not Handled 

Stack  

Alg: DFS 

a l 

h,b,c,i,j,k,d,e,g,l,f Linear Order: 
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Linear Order 

a 

b h 
c i 
d j 
e k 

f 

g 

Found 
Not Handled 

Stack  

Alg: DFS 

l 

a,h,b,c,i,j,k,d,e,g,l,f Done! Linear Order: 
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DFS Algorithm for Topologial Sort   

Ø Makes sense.  But how do we prove that it works? 



Last Updated:  12-03-22 10:12 AM 
CSE 2011 
Prof. J. Elder - 115 - 

Linear Order Found 
Not Handled 

Stack  
Proof: 
• Case 1: u goes on stack first before v. 

• Because of edge, 
    v goes on before u comes off 
• v comes off before u comes off 
• v goes after u in order. J 

u v 
v… u… 

Consider each edge 

v 

…
 

u 

…
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Linear Order Found 
Not Handled 

Stack  
Proof: 
• Case 1: u goes on stack first before v. 
• Case 2: v goes on stack first before u. 
             v comes off before u goes on. 

• v goes after u in order. J 

u v 
v… u… 

Consider each edge 

u 

…
 v 

…
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Linear Order Found 
Not Handled 

Stack  
Proof: 
• Case 1: u goes on stack first before v. 
• Case 2: v goes on stack first before u. 
             v comes off before u goes on. 
Case 3: v goes on stack first before u. 
             u goes on before v comes off. 

• Panic: u goes after v in order. L 
• Cycle means linear order  
     is impossible J 

u v 
u… v… 

Consider each edge 

u 

…
 

v 

…
 

The nodes in the stack form a path starting at s. 
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Linear Order 

a 

b h 
c i 
d j 
e k 

f 

g 

Found 
Not Handled 

Stack  

Alg: DFS 

l 

a,h,b,c,i,j,k,d,e,g,l,f Done! Linear Order: 

ΘAnalysis:  (V+E)
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End of Lecture 

March 22, 2012 
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DFS Application 3.  Topological Sort 

  

Topological-Sort(G)
Precondition: G is a graph
Postcondition: all vertices in G have been pushed onto
stack in reverse linear order

for each vertex u∈V [G] 
color[u] = BLACK //initialize vertex

for each vertex u∈V [G] 
if color[u] = BLACK //as yet unexplored

Topological-Sort-Visit(u)
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DFS Application 3.  Topological Sort 

  

Topological-Sort-Visit (u)
Precondition: vertex u is undiscovered
Postcondition: u and all vertices reachable from u
have been pushed onto stack in reverse linear order

colour[u] ←  RED
for each v ∈Adj[u] //explore edge (u,v)

if color[v ] = BLACK
Topological-Sort-Visit(v)

push u onto stack
colour [u]←GRAY
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Breadth-First Search 
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Breadth-First Search 
Ø  Breadth-first search (BFS) is a general technique for traversing a graph 
Ø  A BFS traversal of a graph G  

q  Visits all the vertices and edges of G 

q  Determines whether G is connected 

q  Computes the connected components of G 

q  Computes a spanning forest of G 

Ø  BFS on a graph with |V| vertices and |E| edges takes O(|V|+|E|) time 

Ø  BFS can be further extended to solve other graph problems 
q  Cycle detection 

q  Find and report a path with the minimum number of edges between two 
given vertices  
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BFS Algorithm Pattern 

  

BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: all vertices in G reachable from s have been visited

for each vertex u∈V [G] 
color[u] ←  BLACK //initialize vertex

colour[s] ←  RED
Q.enqueue(s)
while Q ≠ ∅

u← Q.dequeue()
for each v ∈Adj[u] //explore edge (u,v)

if color[v ] = BLACK
colour[v]←RED
Q.enqueue(v)

colour [u]←GRAY
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BFS is a Level-Order Traversal 

Ø Notice that in BFS exploration takes place on a 
wavefront consisting of nodes that are all the same 
distance from the source s. 

Ø We can label these successive wavefronts by their 
distance:  L0, L1, … 
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BFS Example 

C B 

A 

E 

D 

discovery edge 

cross edge 

A discovered (on Queue) 

A undiscovered 

unexplored edge 

L0 

L1 

F 

C B 

A 

E 

D 
L1 

F 

C B 

A 

E 

D 

L0 

L1 

F 

A finished 
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BFS Example (cont.) 

C B 

A 

E 

D 

L0 

L1 

F 

C B 

A 

E 

D 

L0 

L1 

F 
L2 

C B 

A 

E 

D 

L0 

L1 

F 
L2 

C B 

A 

E 

D 

L0 

L1 

F 
L2 
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BFS Example (cont.) 

C B 

A 

E 

D 

L0 

L1 

F 
L2 

C B 

A 

E 

D 

L0 

L1 

F 
L2 

C B 

A 

E 

D 

L0 

L1 

F 
L2 
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Properties 
Notation 

Gs: connected component of s 
Property 1 

 BFS(G, s) visits all the vertices and 
edges of Gs  

Property 2 
 The discovery edges labeled by 
BFS(G, s) form a spanning tree Ts of 
Gs 

Property 3 
 For each vertex v in Li 
q  The path of  Ts from s to v has i 

edges  
q  Every path from s to v in Gs has at 

least i edges 

C B 

A 

E 

D 

L0 

L1 

F 
L2 

C B 

A 

E 

D 

F 
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Analysis 

Ø Setting/getting a vertex/edge label takes O(1) time 

Ø Each vertex is labeled three times 
q once as BLACK (undiscovered) 

q once as RED (discovered, on queue) 

q once as GRAY (finished) 

Ø Each edge is considered twice (for an undirected graph) 

Ø Each vertex is placed on the queue once  

Ø  Thus BFS runs in O(|V|+|E|) time provided the graph is 
represented by an adjacency list structure 
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Applications 

Ø BFS traversal can be specialized to  solve the 
following problems in O(|V|+|E|) time: 
q Compute the connected components of G 

q Compute a spanning forest of G 

q Find a simple cycle in G, or report that G is a forest 

q Given two vertices of G, find a path in G between 
them with the minimum number of edges, or report 
that no such path exists 
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Application:  Shortest Paths on an Unweighted Graph 

Ø Goal: To recover the shortest paths from a source node 
s to all other reachable nodes v in a graph. 
q The length of each path and the paths themselves are returned. 

Ø Notes:   
q There are an exponential number of possible paths 

q Analogous to level order traversal for graphs 

q This problem is harder for general graphs than trees because of 
cycles! 

s 

? 
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Breadth-First Search 

Ø  Idea:  send out search ‘wave’ from s. 

Ø  Keep track of progress by colouring vertices: 
q  Undiscovered vertices are coloured black 

q  Just discovered vertices (on the wavefront) are coloured red. 

q  Previously discovered vertices (behind wavefront) are coloured grey. 

Graph ( , ) (directed or undirected) and sourceInput:  vertex   .G V E s V= ∈

[ ]  shortest path distance ( , ) from  to ,  .
  [ ]  such that ( , ) is las

Outpu

t edg

t:  
 

e on  shortest path from a  to
 

 .
d v s v s v v V

v u u v s v
δ

π
= ∀ ∈
=



Last Updated:  12-03-22 10:12 AM 
CSE 2011 
Prof. J. Elder - 134 - 

BFS Algorithm with Distances and Predecessors 

  

BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: d[u] = shortest distance δ [u] and 
π [u] = predecessor of u on shortest path from s to each vertex u in G

for each vertex u∈V [G]
d[u]←∞
π [u]← null 
color[u] = BLACK //initialize vertex

colour[s] ←  RED
d[s]← 0 
Q.enqueue(s)
while Q ≠ ∅

u← Q.dequeue()
for each v ∈Adj[u] //explore edge (u,v)

if color[v ] = BLACK
colour[v]←RED
d[v ]← d[u]+1 
π [v ]← u
Q.enqueue(v)

colour [u]←GRAY
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BFS 

s 

a 

c 

h 

k 

f 

i 

l 

m 

j 

e 

b 

g 
d 

Found 
Not Handled 

Queue 

First-In First-Out (FIFO) queue 
stores ‘just discovered’ vertices 



Last Updated:  12-03-22 10:12 AM 
CSE 2011 
Prof. J. Elder - 136 - 

BFS 

s 

a 

c 

h 

k 

f 

i 

l 

m 

j 

e 

b 

g 
d 

Found 
Not Handled 

Queue 

s 

d=0 

d=0 
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BFS Found 
Not Handled 

Queue 

d=0 
a 

b 
g 
d 

d=1 

s 

a 

c 

h 

k 

f 

i 

l 

m 

j 

e 

b 

g 
d 

d=0 
d=1 
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BFS 

s 

a 

c 

h 

k 

f 

i 

l 

m 

j 

e 

b 

g 
d 

Found 
Not Handled 

Queue 

a 

b 
g 
d 

d=0 
d=1 

d=1 



Last Updated:  12-03-22 10:12 AM 
CSE 2011 
Prof. J. Elder - 139 - 

BFS 

s 

a 

c 

h 

k 

f 

i 

l 

m 

j 

e 

b 

g 
d 

Found 
Not Handled 

Queue 

b 
g 
d 

c 
f 

d=0 
d=1 

d=2 

d=1 

d=2 
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BFS 

s 

a 

c 

h 

k 

f 

i 

l 

m 

j 

e 

b 

g 
d 

Found 
Not Handled 

Queue 

b 
g 

c 
f 
m 
e 

d=0 
d=1 

d=2 

d=1 

d=2 



Last Updated:  12-03-22 10:12 AM 
CSE 2011 
Prof. J. Elder - 141 - 

BFS 

s 

a 

c 

h 

k 

f 

i 

l 

m 

j 

e 

b 

g 
d 

Found 
Not Handled 

Queue 
d=0 

d=1 

d=2 

b 

j 

c 
f 
m 
e 

d=1 
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BFS 

s 

a 

c 

h 

k 

f 

i 

l 

m 

j 

e 

b 

g 
d 

Found 
Not Handled 

Queue 
d=0 

d=1 

d=2 

j 

c 
f 
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BFS 

s 

a 

c 

h 

k 

f 

i 

l 

m 

j 

e 

b 

g 
d 

Found 
Not Handled 

Queue 

c 
f 
m 
e 
j 

d=0 
d=1 

d=2 

d=2 



Last Updated:  12-03-22 10:12 AM 
CSE 2011 
Prof. J. Elder - 144 - 

BFS 

s 

a 

c 

h 

k 

f 

i 

l 

m 

j 

e 

b 

g 
d 

Found 
Not Handled 

Queue 

f 
m 
e 
j 
h 
i 
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BFS 

s 

a 

c 

h 

k 

f 

i 

l 

m 

j 

e 

b 

g 
d 

Found 
Not Handled 

Queue 

m 
e 
j 
h 
i 
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d=1 
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BFS 

s 

a 

c 

h 

k 

f 

i 

l 

m 

j 

e 

b 

g 
d 

Found 
Not Handled 

Queue 

e 
j 
h 
i 
l 

d=0 
d=1 

d=2 

d=3 

d=2 

d=3 
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BFS 

s 

a 

c 

h 

k 

f 

i 

l 
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e 

b 
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d 

Found 
Not Handled 

Queue 
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BFS 

s 

a 

c 

h 

k 

f 

i 

l 

m 
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e 
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d 

Found 
Not Handled 

Queue 
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BFS 

s 

a 

c 

h 

k 

f 

i 

l 

m 

j 

e 

b 

g 
d 

Found 
Not Handled 

Queue 

h 
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d=1 

d=2 

d=3 
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l 

d=3 



Last Updated:  12-03-22 10:12 AM 
CSE 2011 
Prof. J. Elder - 150 - 

BFS 

s 

a 

c 

h 

k 

f 

i 
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e 
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d 

Found 
Not Handled 

Queue 
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BFS 

s 

a 
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BFS 

s 
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BFS 
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BFS 

s 

a 

c 
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k 

f 

i 
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Found 
Not Handled 

Queue 
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Breadth-First Search Algorithm:  Properties 

Ø  Q is a FIFO queue. 

Ø  Each vertex assigned finite d 
value at most once. 

Ø  Q contains vertices with d 
values {i, …, i, i+1, …, i+1} 

Ø  d values assigned are 
monotonically increasing over 
time. 

  

BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: d[u] = shortest distance δ [u] and 
π [u] = predecessor of u on shortest paths from s to each vertex u in G

for each vertex u∈V [G]
d[u]←∞
π [u]← null 
color[u] = BLACK //initialize vertex

colour[s] ←  RED
d[s]← 0 
Q.enqueue(s)
while Q ≠ ∅

u← Q.dequeue()
for each v ∈Adj[u] //explore edge (u,v)

if color[v ] = BLACK
colour[v]←RED
d[v ]← d[u]+1 
π [v ]← u
Q.enqueue(v)

colour [u]←GRAY
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Breadth-First-Search is Greedy 

Ø Vertices are handled: 
q   in order of their discovery (FIFO queue) 

q Smallest d values first 
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Basic Steps: 

s 
u 

The shortest path to u 
has length d 

v 

& there is an edge  
from u to v 

There is a path to v with length d+1. 

Correctness 

d 
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Correctness:  Basic Intuition 

Ø When we discover v, how do we know there is not a 
shorter path to v? 
q Because if there was, we would already have discovered it! 

s 
u v d 
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Correctness:  More Complete Explanation 

Ø Vertices are discovered in order of their distance from 
the source vertex s. 

Ø Suppose that at time t1 we have discovered the set Vd of 
all vertices that are a distance of d from s. 

Ø Each vertex in the set Vd+1 of all vertices a distance of    
d+1 from s must be adjacent to a vertex in Vd 

Ø  Thus we can correctly label these vertices by visiting all 
vertices in the adjacency lists of vertices in Vd. 

s 
u v d 
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Inductive Proof of BFS 

  

Suppose at step i  that the set of nodes Si  with distance δ(v) ≤ di  have been 

discovered and their distance values d[v ] have been correctly assigned.

  Any node v  with δ(v) = di +1 must be adjacent to Si .

  Any node v  adjacent to Si  but not in Si  must have δ(v) = di +1.

  At step i +1, all nodes on the queue with d values of di  are dequeued and processed.

  

Thus after step i +1, all nodes v  with distance δ(v) ≤ di +1 have been discovered

and their distance values d[v ] have been correctly assigned.

  Further suppose that the queue contains only nodes in Si  with d  values of di .

  In so doing, all nodes adjacent to Si  are discovered and assigned d  values of di +1.   

  Furthermore, the queue contains only nodes in Si  with d  values of di +1.
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Correctness:  Formal Proof 

Graph ( , ) (directed or undirected) and sourceInput:  vertex   .G V E s V= ∈

  

Output:  
  d[v] =  distance δ(v) from s  to v,  ∀v ∈V .
  π[v] = u such that (u,v) is last edge on shortest path from s  to v .

1. [ ] ( , )d v s v v Vδ≥ ∀ ∈

2. [ ] ( , )  d v s v v Vδ> ∀ ∈/

Two-step proof: 

On exit: 
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δ≥ ∀ ∈Claim 1.  is never too small:  [ ] ( , )d d v s v v V

  Proof:  There exists a path from s to v  of length ≤ d[v ].

By Induction:
Suppose it is true for all vertices thus far discovered (  an grre  d d ey).

 is discovered from some adjacent vertex  being handled.uv

→ = +[ ] [ ] 1d v d u
δ≥ +( , ) 1us
δ≥ ( , )s v u v 

s 

since each vertex  is assigned a  value exactly once, 
it follows that o [ ]n exit, ( ., )d v s v

v
v V
d

δ≥ ∀ ∈
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BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: d[u] = shortest distance δ [u] and 
π [u] = predecessor of u on shortest paths from s to each vertex u in G

for each vertex u∈V [G]
d[u]←∞
π [u]← null 
color[u] = BLACK //initialize vertex

colour[s] ←  RED
d[s]← 0 
Q.enqueue(s)
while Q ≠ ∅

u← Q.dequeue()
for each v ∈Adj[u] //explore edge (u,v)

if color[v ] = BLACK
colour[v]←RED
d[v ]← d[u]+1 
π [v ]← u
Q.enqueue(v)

colour [u]←GRAY

<LI>: [ ] ( , )  'disco rvered' (  o gr )eyred   d v s v v Vδ← ≥ ∀ ∈

( , ) 1s uδ≥ + ( , )s vδ≥

δ≥ ∀ ∈Claim 1.  is never too small:  [ ] ( , )d d v s v v V
  Proof:  There exists a path from s to v  of length ≤ d[v ].

s 
u v 
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δ≤ ∀ ∈Claim 2.   is never too big:  [ ] ( , )  d d v s v v V
Proof by contradiction:

δSuppose one or more vertices receive a  value greater than .d

δLet  be the vertex with minimum ( , ) that receives such a  value.s dv v

Let  be 's predecessor on a shortest path from  to .u sv v

s 
u v 

Suppose that  is discovered and assigned this d value when vertex  is dequeued.v x

= −[ ] [ ] 1d x d v

δ= −[ ] ( , ) 1d s vu

δ <( , ) [ ]vs d v

  vertices are dequeued in increasing order of Reca  v .ll: alued
→  u was dequeued before x.

δ→ = + =[ ] [ ] 1 ( , )dvd u s v

x δ→ − < −( , ) 1 [ ] 1v d vs

→ <[ ] [ ]d u d x

Then

Contradiction! 
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Correctness 

δ≥ ∀ ∈Claim 1.  is never too small:  [ ] ( , )d d v s v v V

δ≤ ∀ ∈Claim 2.   is never too big:  [ ] ( , )  d d v s v v V

δ⇒ = ∀ ∈ is just right:  [ ] ( , )  d d v s v v V
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Progress? Ø  On every iteration one vertex is processed (turns gray). 

  

BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: d[u] = shortest distance δ [u] and 
π [u] = predecessor of u on shortest paths from s to each vertex u in G

for each vertex u∈V [G]
d[u]←∞
π [u]← null 
color[u] = BLACK //initialize vertex

colour[s] ←  RED
d[s]← 0 
Q.enqueue(s)
while Q ≠ ∅

u← Q.dequeue()
for each v ∈Adj[u] //explore edge (u,v)

if color[v ] = BLACK
colour[v]←RED
d[v ]← d[u]+1 
π [v ]← u
Q.enqueue(v)

colour [u]←GRAY
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End of Lecture 

March 27, 2012 
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Ø  The shortest path problem has the optimal substructure property: 
q  Every subpath of a shortest path is a shortest path. 

 

Ø  The optimal substructure property  
q  is a hallmark of both greedy and dynamic programming algorithms. 

q  allows us to compute both shortest path distance and the shortest paths 
themselves by storing only one d value and one predecessor value per 
vertex. 

Optimal Substructure Property 

u v s 

shortest path 

shortest path shortest path 

How would we  
prove this? 
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Recovering the Shortest Path 
For each node v, store predecessor of v in π(v). 

s 
u v 

Predecessor of v is 

π(v) 

π(v) = u. 
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Recovering the Shortest Path 

Precondition:   and  are vertices of graph 
Postcondition: the vertices on the shortest path from  to  have been prin

 

P

if then

RINT-PATH( ,  ,  )

pr

 
print

ted in o

 
else 

int
if 

rd

then [ ] I  
"

e

L
 

r

N

s v G
s v

s

v

v

s
s

G

v

π

=

=

else
no path from"  "to"  "exists"

PRINT-PATH( ,  ,  [ ])
print 

 
s v

G s v
v

π
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BFS Algorithm without Colours 

  

BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: predecessors π [u] and shortest 
distance d[u] from s to each vertex u in G has been computed

for each vertex u∈V [G]
d[u]←∞
π [u]← null 

d[s]← 0 
Q.enqueue(s)
while Q ≠ ∅

u← Q.dequeue()
for each v ∈Adj[u] //explore edge (u,v)

if d[v ] = ∞
d[v ]← d[u]+1 
π [v ]← u
Q.enqueue(v)
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End of Lecture 
& 

End of Course 

March 29, 2012 
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Single-Source (Weighted) Shortest Paths 
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3 

Shortest Path on Weighted Graphs 

Ø BFS finds the shortest paths from a source node s to 
every vertex v in the graph. 

Ø Here, the length of a path is simply the number of edges 
on the path. 

Ø But what if edges have different ‘costs’?  

s 

v 

( , ) 3s vδ = ( , ) 12s vδ =

2 s 

v 
2 

5 1 
7 
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Weighted Graphs 

Ø  In a weighted graph, each edge has an associated numerical 
value, called the weight of the edge 

Ø  Edge weights may represent, distances, costs, etc. 

Ø  Example: 
q  In a  flight route graph, the weight of an edge represents the 

distance in miles between the endpoint airports 

ORD 
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1120 
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Shortest Paths  
Ø  Given a weighted graph and two vertices u and v, we want to find 

a path of minimum total weight between u and v. 
q  Length of a path is the sum of the weights of its edges. 

Ø  Example: 
q  Shortest path between Providence and Honolulu 

Ø  Applications 
q  Internet packet routing  

q  Flight reservations 

q  Driving directions 
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Shortest Path:  Notation 

 

Ø  Input: 

0 1 1
1

Weight of path , ,...,  ( , )
k

i ik
i

p v v v w v v−
=

=< > =∑
Shortest-path weight from  to :u v

   

δ (u,v ) = min{w(p) :  u →
p

→v } if ∃ a path u →→v,
∞ otherwise.

  
 

⎧
⎨
⎪

⎩⎪

Shortest path from  to  is any path  such that ( ) ( , ).u v p w p u vδ=

Directed Graph ( , )G V E=

   Edge weights w :E → 
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Shortest Path Properties 
Property 1 (Optimal Substructure): 

 A subpath of a shortest path is itself a shortest path 

Property 2 (Shortest Path Tree): 
 There is a tree of shortest paths from a start vertex to all the other vertices 

Example: 
 Tree of shortest paths from Providence 
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Shortest path trees are not necessarily unique 

Single-source shortest path search induces a search tree rooted at s. 

This tree, and hence the paths themselves, are not necessarily unique. 
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Optimal substructure:  Proof 
Ø  Lemma:  Any subpath of a shortest path is a shortest path 

Ø  Proof:  Cut and paste. 

   Now suppose there exists a shorter path x →
′pxy

→ y .

Then ( ) ( ).xy xyw p w p′ <

Construct p :′

Then ( ) ( ) ( ) ( )ux xy yvw p w p w p w p′ ′= + +  ( ) ( ) ( )ux xy yvw p w p w p< + + ( ).w p=

So p wasn't a shortest path after all!

Suppose this path  is a shortest path from  to .p u v

Then ( , ) ( ) ( ) ( ) ( ).ux xy yvu v w p w p w p w pδ = = + +
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Shortest path variants 

Ø Single-source shortest-paths problem: – the 
shortest path from s to each vertex v.  

Ø Single-destination shortest-paths problem: Find a 
shortest path to a given destination vertex t from 
each vertex v.  

Ø Single-pair shortest-path problem: Find a shortest 
path from u to v for given vertices u and v.  

Ø All-pairs shortest-paths problem: Find a shortest 
path from u to v for every pair of vertices u and v.  
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Negative-weight edges 
Ø OK, as long as no negative-weight cycles are reachable 

from the source. 
q  If we have a negative-weight cycle, we can just keep going 

around it, and get w(s, v) = −∞ for all v on the cycle. 

q But OK if the negative-weight cycle is not reachable from the 
source. 

q Some algorithms work only if there are no negative-weight edges 
in the graph. 
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Cycles 

Ø Shortest paths can’t contain cycles: 

q Already ruled out negative-weight cycles. 

q Positive-weight:  we can get a shorter path by omitting the cycle. 

q Zero-weight: no reason to use them à assume that our solutions 
won’t use them. 



Last Updated:  12-03-22 10:12 AM 
CSE 2011 
Prof. J. Elder - 184 - 

Shortest-Path Example:  Single-Source 
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Output of a single-source shortest-path algorithm 

Ø For each vertex v in V: 

q d[v] = δ(s, v). 

² Initially, d[v]=∞. 

² Reduce as algorithm progresses.  
 But always maintain d[v] ≥ δ(s, v). 

² Call d[v] a shortest-path estimate. 

q π[v] = predecessor of v on a shortest path from s. 

² If no predecessor, π[v] = NIL. 

² π induces a tree — shortest-path tree. 
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Initialization 

Ø All shortest-path algorithms start with the 
same initialization: 
INIT-SINGLE-SOURCE(V, s) 

for each v in V 
do d[v]←∞ 

π[v] ← NIL 

d[s] ← 0 
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Relaxing an edge 

Ø  Can we improve shortest-path estimate for v by first going to u 
and then following edge (u,v)? 

RELAX(u, v, w) 

 if d[v] > d[u] + w(u, v) then  

  d[v] ← d[u] + w(u, v) 

  π[v]← u 
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General single-source shortest-path strategy 

1.  Start by calling INIT-SINGLE-SOURCE 

2.  Relax Edges 

Algorithms differ in the order in which edges are 
taken and how many times each edge is relaxed. 



Last Updated:  12-03-22 10:12 AM 
CSE 2011 
Prof. J. Elder - 189 - 

Example 1.   Single-Source Shortest Path 
on a Directed Acyclic Graph 

Ø Basic Idea:  topologically sort nodes and relax in linear 
order. 

Ø Efficient, since δ[u] (shortest distance to u)  has already 
been computed when edge (u,v) is relaxed. 

Ø  Thus we only relax each edge once, and never have to 
backtrack. 
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Example:  Single-source shortest paths in a directed 
acyclic graph (DAG) 

Ø  Since graph is a DAG, we are guaranteed no 
negative-weight cycles. 

Ø  Thus algorithm can handle negative edges 
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Algorithm 

Time: ( )V EΘ +
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Example 
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Example 
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Example 
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Example 
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Example 
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Example 
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Correctness:  Path relaxation property  

0 1 0Let ,  ,  . . . ,   be a shortest path from   .k kp v v v s v to v=< > =

0 1 1 2 -1If we relax, in order, ( , ),  ( , ),  . . . ,  ( , ), k kv v v v v v

even intermixed with other relaxations,
then [ ]  ( ,  ).k kd v s vδ=
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Correctness of DAG Shortest Path Algorithm 

Ø Because we process vertices in topologically sorted 
order, edges of any path are relaxed in order of 
appearance in the path. 

q àEdges on any shortest path are relaxed in order. 

q àBy path-relaxation property, correct. 



Last Updated:  12-03-22 10:12 AM 
CSE 2011 
Prof. J. Elder - 200 - 

Example 2.  Single-Source Shortest Path on 
a General Graph (May Contain Cycles) 

Ø  This is fundamentally harder, because the first paths we 
discover may not be the shortest (not monotonic). 
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Dijkstra’s algorithm (E. Dijkstra,1959) 
Ø Applies to general, weighted, directed or 

undirected graph (may contain cycles). 

Ø But weights must be non-negative. (But they 
can be 0!) 

Ø Essentially a weighted version of BFS. 
q  Instead of a FIFO queue, uses a priority queue. 

q Keys are shortest-path weights (d[v]). 

Ø Maintain 2 sets of vertices: 
q S = vertices whose final shortest-path weights are 

determined. 

q Q = priority queue = V-S. 
Edsger Dijkstra 
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Dijkstra’s Algorithm:  Operation  

Ø  We grow a “cloud” S of vertices, beginning with s and eventually 
covering all the vertices 

Ø  We store with each vertex v a label d(v) representing the distance of v 
from s in the subgraph consisting of the cloud S and its adjacent vertices 

Ø  At each step 
q We add to the cloud S the vertex u outside the cloud with the smallest 

distance label, d(u) 

q We update the labels of the vertices adjacent to u  

S 

7 

9 

∞

∞11 

1 

4 

s 



Last Updated:  12-03-22 10:12 AM 
CSE 2011 
Prof. J. Elder - 203 - 

Dijkstra’s algorithm 

n  Dijkstra’s algorithm can be viewed as greedy, since it always 
chooses the “lightest” vertex in V − S to add to S. 
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Dijkstra’s algorithm:  Analysis 

n  Analysis: 
n  Using minheap, queue operations takes O(logV) time 

( )O V

(log )O V ( ) iterationsO V×

(log )O V ( ) iterationsO E×

Running Time is ( log )O E V→
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Example 

  

White ⇔  Vertex ∈Q =V - S
Grey ⇔  Vertex = min(Q)

Black ⇔  Vertex ∈S, Off Queue

Key: 
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Example 
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Example 
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Example 
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Example 
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Example 



Last Updated:  12-03-22 10:12 AM 
CSE 2011 
Prof. J. Elder - 211 - 

Djikstra’s Algorithm Cannot Handle Negative Edges 

3 

2 

-2 

s 

1 

x y z 
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Correctness of Dijkstra’s algorithm 

Ø  Loop invariant: d[v] = δ(s, v) for all v in S. 
q  Initialization: Initially, S is empty, so trivially true. 

q  Termination: At end, Q is empty àS = V à d[v] = δ(s, v) for all v in V. 

q Maintenance:  
² Need to show that  

v  d[u] = δ(s, u) when u is added to S in each iteration. 
v  d[u] does not change once u is added to S. 
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Correctness of Dijkstra’s Algorithm:  Upper Bound Property 
Ø  Upper Bound Property: 

1. [ ] ( , )d v s v v Vδ≥ ∀ ∈

•  Proof: 
By induction.

 [ ] ( , )  immediately after initialization, since
[ ] 0 ( ,

Base Cas :

[ ]

e
)

d v s v v V
d s s s
d v v s

δ
δ

≥ ∀ ∈
= =
= ∞∀ ≠

δ≥ ∀ ∈Suppose
Inductive Step:

 [ ] ( , )d x s x x V

( , ) ( , )s u w u vδ≥ +

( , )s vδ≥

If [ ] changes, then [ ] [ ] ( , )d v d v d u w u v= +

Suppose we relax edge ( , ).u v

2. Once [ ] ( , ),  it doesn't changed v s vδ=

A valid path from s to v! 
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Correctness of Dijkstra’s Algorithm 
When  is added to Clai , [ ] (m  ): ,u S d u s uδ=

Let  be first vertex in  on shortest path to  y V S u−
Let  be the predecessor of  on the shortest path to x y u

 [ ] ( , ) when  is added toCl :  .aim d y s y u Sδ=
Proof:

[ ] ( , ),  since x .d x s x Sδ= ∈
( , ) was relaxed when  was added to x y x S [ ] ( , ) ( , ) ( , )d y s x w x y s yδ δ→ = + =

Handled 

Let  be the first vertex added to  
such tha
Proof by Con

t [ ] ( , ) when  is added.
tradiction: u S

d u s u uδ≠

Optimal substructure 
property! 
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Correctness of Dijkstra’s Algorithm 
Thus [ ] ( , ) when  is added to .d y s y u Sδ=

[ ] ( , ) ( , ) [ ] (upper bound property)d y s y s u d uδ δ→ = ≤ ≤

But [ ] [ ] when  added to d u d y u S≤

Thus [ ] ( , ) ( , ) [ ]!d y s y s u d uδ δ= = =

Thus when  is added to , [ ] ( , )u S d u s uδ=

There is a shortest path to  such that the predecessor of  [ ]
Conse

 whe
quences

n  is added to .
:

u u u S u Sπ ∈

π [ ]u

=2The path through  can only be a shortest path if [ ] 0.y w p

Handled 
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Correctness of Dijkstra’s algorithm 

Ø  Loop invariant: d[v] = δ(s, v) for all v in S. 
q Maintenance:  

² Need to show that  
v  d[u] = δ(s, u) when u is added to S in each iteration. 

v  d[u] does not change once u is added to S. 

δ=Thus once [ ] ( , ), it will not be changed.d v s v

 can only decRelax(u rease ],v,w) [ .d v
δ≥upper bound prBy the , operty [ ] ( , ).d v s v

ü 
? 


