CSE 2011
UYQBSIS ' -1- Last Updated: 12-03-22 10:12 AM
Prof. J. Elder

UUUUUUUUUU

Applications

» Electronic circuits
O Printed circuit board

U Integrated circuit

» Transportation networks

O Highway network
O Flight network

brown.edu ‘_

» Computer networks att.net

] Local area network

U Internet
O Web

» Databases

U Entity-relationship diagram

CSE 2011
YORK ' -2- Last Updated: 12-03-22 10:12 AM
uNIvERSITE Prof. J. Elder

UUUUUUUUUU

Edge Types

» Directed edge
U ordered pair of vertices (u,v)
U first vertex u is the origin
[second vertex v is the destination flight

AA 1206
U e.g., aflight >

» Undirected edge

U unordered pair of vertices (u,v) 849

d e.g., aflight route @ miles @

» Directed graph (Digraph)

U all the edges are directed
U e.g., route network
» Undirected graph
O all the edges are undirected

O e.g., flight network

CSE 2011
UYQRSK ' Prof. J. Elder -3- Last Updated: 12-03-22 10:12 AM

IIIIIIIIII

Vertices and Edges

» End vertices (or endpoints) of
an edge

O U and V are the endpoints of a
» Edges incident on a vertex
U a, d, and b are incident on V

» Adjacent vertices
O U and V are adjacent

» Degree of a vertex
U X has degree 5

» Parallel edges

U h and i are parallel edges
> Self-loop

O jis a self-loop

CSE 2011
YORKHJ _4- Last Updated: 12-03-22 10:12 AM
“““““““““ > Prof. J. Elder

IIIIIIIIII

Graphs

» A graphis a pair (V, E), where
1 Vs a set of nodes, called vertices
O E is a collection of pairs of vertices, called edges
[Vertices and edges are positions and store elements
» Example:
O A vertex represents an airport and stores the three-letter airport code

O An edge represents a flight route between two airports and stores the
mileage of the route

1843

CSE 2011
UYQBSK ' Prof. J. Elder -5- Last Updated: 12-03-22 10:12 AM

IIIIIIIIII

Paths

> Path

O sequence of alternating
vertices and edges

U begins with a vertex
U ends with a vertex

U each edge is preceded and
followed by its endpoints

» Simple path

O path such that all its vertices
and edges are distinct

» Examples
0 P,=(V,b,X,h,2) is a simple path

a P,=(U,c,W,e,X,g,Y,fW.,d,V) is a
path that is not simple

CSE 2011
UYQBSK ' Prof. J. Elder -6 - Last Updated: 12-03-22 10:12 AM

IIIIIIIIII

Cycles

» Cycle

O circular sequence of alternating
vertices and edges

U each edge is preceded and
followed by its endpoints

» Simple cycle

U cycle such that all its vertices
and edges are distinct

» Examples

a C,=(V,b,X,g,Y,fW,c,U,a,«)is a
simple cycle

Q C,=(U,c,W,e,X,g,Y,fW,d,V,a,+)
IS a cycle that is not simple

CSE 2011
YORK [i B -7- Last Updated: 12-03-22 10:12 AM

IIIIIIIIII

Subgraphs

» A subgraph S of a graph
G is a graph such that

(1 The vertices of S are a
subset of the vertices of G

O The edges of S are a
subset of the edges of G

» A spanning subgraph of
G is a subgraph that
contains all the vertices of
G

YORK | CsE2on 5.

“““““““““ Prof. J. Elder

UUUUUUUUUU

Spanning subgraph

Last Updated: 12-03-22 10:12 AM

Connectivity

» A graph is connected if
there is a path between
every pair of vertices

» A connected component
of a graph G is a maximal
connected subgraph of G

YORK ' CSE 2011

““““““““““ Prof. J. Elder

IIIIIIIIII

Connected graph

O

Non connected graph with two
connected components

Last Updated: 12-03-22 10:12 AM

Trees

Tree Forest Graph with Cycle

A tree is a connected, acyclic, undirected graph.

A forest is a set of trees (not necessarily connected)

CSE 2011
YORK ' -10 - Last Updated: 12-03-22 10:12 AM
“““““““““ Prof. J. Elder

UUUUUUUUUU

Spanning Trees

» A spanning tree of a connected
graph is a spanning subgraph that
is a tree

» A spanning tree is not unique
unless the graph is a tree

» Spanning trees have applications
to the design of communication
networks Graph

» A spanning forest of a graph is a
spanning subgraph that is a forest

Spanning tree

CSE 2011
YORK ' -11 - Last Updated: 12-03-22 10:12 AM
””””””””” Prof. J. Elder

IIIIIIIIII

Reachability in Directed Graphs
» A node w is reachable from v if there is a directed path
originating at v and terminating at w.
O E is reachable from B

[B is not reachable from E

CSE 2011
YORK ' -12 - Last Updated: 12-03-22 10:12 AM
““““““““““ Prof. J. Elder

IIIIIIIIII

Properties

Property 1 Notation
Y. deg(v) =2|E| V] number of vertices
Proof: each edge is counted [E| number of edges
twice deg(v) degree of vertex v
Property 2
In an undirected graph with no Example
self-loops and no multiple . |V]=4
edges
x |E|=6
[EI <[V (V- 1D)/2 a deg(v)=3

Proof. each vertex has degree
at most (|V] - 1)

Q: What is the bound for a digraph?
A: |E|<|V|(V|-1)

CSE 2011
YORK ' -13 - Last Updated: 12-03-22 10:12 AM
““““““““““ Prof. J. Elder

IIIIIIIIII

Main Methods of the (Undirected) Graph ADT
» Vertices and edges » Update methods

[are positions O insertVertex(o): insert a vertex

storing element o
[store elements 9

O insertEdge(v, w, 0): insert an

» Accessor methods edge (v,w) storing element o
 endVertices(e): an array of the O removeVertex(v): remove vertex
two endvertices of e v (and its incident edges)
O opposite(v, e): the vertex d removeEdge(e): remove edge e

opposite tovon e

0 areAdjacent(v, w): true iff v and > lterator methods

w are adjacent O incidentEdges(v): edges
incident to v
O replace(v, x): replace element at
vertex v with x [vertices(): all vertices in the
O replace(e, x): replace element at graph
edge e with x) edges(): all edges in the graph
UYN,(\,)EBS,IS ' CSE 2011 -14 - Last Updated: 12-03-22 10:12 AM

Prof. J. Elder

IIIIIIIIII

Directed Graph ADT

» Additional methods:

O isDirected(e): return true if e is a directed edge

U insertDirectedEdge(v, w, 0): insert and return a new directed
edge with origin v and destination w, storing element o

CSE 2011
YORK ' -15 - Last Updated: 12-03-22 10:12 AM
””””””””” Prof. J. Elder

IIIIIIIIII

Running Time of Graph Algorithms

» Running time often a function of both |V| and |E]|.

» For convenience, we sometimes drop the | . | in
asymptotic notation, e.g. O(V+E).

CSE 2011
YORK ' -16 - Last Updated: 12-03-22 10:12 AM
””””””””” Prof. J. Elder

IIIIIIIIII

Implementing a Graph (Simplified)

1 2 3 4 5
| 2] =51/ {0 1 0 0 l!
~ 1| 5] 3] H4a]/] L0 1 1 1|
0 0 1 0

L N
‘ T /_BJ = ! | ' 1 T 3]
(5 \4j S|4l = ' 7-.]" 2 7_ S5{L 1.0 1 0

o ! 1 0 1)

W R SR S S
N
\
N
i
4
i
AN

i FY I N

Adjacency List Adjacency Matrix
Space complexity: OV +E) oV?)
Time to find all neighbours of vertex u : &(degree(u)) o)
Time to determine if (u,v)€ E : O(degree(u)) 6(1)
XQR,I(E ' ©SF 20T -17 - Last Updated: 12-03-22 10:12 AM

Prof. J. Elder

IIIIIIIIII

Representing Graphs (Detalls)

» Three basic methods
 Edge List
O Adjacency List
O Adjacency Matrix

CSE 2011
YORK ' -18 - Last Updated: 12-03-22 10:12 AM
““““““““““ Prof. J. Elder

IIIIIIIIII

Edge List Structure

» Vertex object
O element

O reference to position in vertex
sequence

» Edge object y . N .
O element a
 origin vertex object
O destination vertex object R () (<) Q
A reference to position in edge fi ﬁ T
sequence ¢y | o] 2

» Vertex sequence

[sequence of vertex objects

» Edge sequence
U sequence of edge objects

w

CSE 2011
YORKN _19- Last Updated: 12-03-22 10:12 AM
““““““““ Prof. J. Elder

UUUUUUUUUU

Adjacency List Structure

» Edge list structure

» Incidence sequence for
each vertex

O sequence of references to
edge objects of incident
edges

» Augmented edge objects

O references to associated
positions in incidence
sequences of end vertices

YORK ' CSE 2011

““““““““ = Prof. J. Elder

UUUUUUUUUU

oo

- 20 - Last Updated: 12-03-22 10:12 AM

Adjacency Matrix Structure

» Edge list structure

» Augmented vertex 5 b
objects Q/ﬂ\@

O Integer key (index)
associated with vertex

(D
> 2D-array adjacency 7l< Q
array T
¢ |v

O Reference to edge 0[¢]u 1
object for adjacent
vertices

O Null for non-
nonadjacent vertices

1 2
v lg
Q| «
'\\"’/'

CSE 2011
YORI(ﬁ ' -21- Last Updated: 12-03-22 10:12 AM
““““““““ Prof. J. Elder

UUUUUUUUUU

Asymptotic Performance
(assuming collections V and E represented as
doubly-linked lists)

@ |V] vertices, |E| edges

no parallel edges Edge Adjacency Adjacency
@ no self-loops List List Matrix

Bounds are “big-Oh”

Space VI E| |V HE] 145
incidentEdges(v) E deg(v) V]
areAdjacent (v, w) E min(deg(v), deg(w)) 1
insertVertex(o) 1] 145
insertEdge(y, w, o) 1 1 1
removeVertex(v) IE| deg(v) 145
removeEdge(e) 1 1 1

YORK ' CSE 2011 -22 - Last Updated: 12-03-22 10:12 AM

IIIIIIIIII
UUUUUUUUUU

Prof. J. Elder

UNIVERSITE
u

N
N

1
1

v
v

E
E

R
R

sﬁﬁ!@“‘wgﬁwﬁ

Thistletown ;\(%'

|

|
North Kipling Park

Graph Search Algorithms

1
\

Copyright @20

vnm

1T E
Ty

"

/\
Pa
-

4 Microsoft Cot3. and/or its sup%_e«s All

YORK

CSE 2011

A \Jg :

g —
Clarinda Park ~ | F[Qveﬂ ‘@L
“I : Manor[Park | caa)
Horth Vorﬂ‘ b3
b
T
ot Don YOk Cemetery |
Parklands

Downsview
Dells

w\cha\k'arm
i Park g

Downsview

L Aiport

i e
1 s T

Brookdale
Park.

Gardens

Sunnybrook Park |

W\mm
Creiek Park-

Ernest

* Thompson
Seton Park Taylor
RY Burgess Creek

Prof. J. Elder

-23.-

Last Updated: 12-03-22 10:12 AM

Depth First Search (DFS)

> |ldea:

O Continue searching “deeper” into the graph, until we get
stuck.

O If all the edges leaving v have been explored we “backtrack”
to the vertex from which v was discovered.

L Analogous to Euler tour for trees

» Used to help solve many graph problems, including
O Nodes that are reachable from a specific node v
[Detection of cycles
O Extraction of strongly connected components

O Topological sorts

CSE 2011
YO R K ' -24 - Last Updated: 12-03-22 10:12 AM
””””””””” Prof. J. Elder

IIIIIIIIII

Depth-First Search

» The DFS algorithm is
similar to a classic
strategy for exploring a
maze

J We mark each
intersection, corner and
dead end (vertex) visited

L We mark each corridor
(edge) traversed

O We keep track of the path
back to the entrance
(start vertex) by means of
a rope (recursion stack)

YORK ' CSE 2011

””””””””” Prof. J. Elder

IIIIIIIIII

T

-25-

Last Updated: 12-03-22 10:12 AM

Depth-First Search

Input: Graph & =(V,E) (directed or undirected)

» Explore every edge, starting from different vertices if necessary.
»> As soon as vertex discovered, explore from it.

» Keep track of progress by colouring vertices:
4 Black: undiscovered vertices
O Red: discovered, but not finished (still exploring from it)

O Gray: finished (found everything reachable from it).

CSE 2011
YO RK ' - 26 - Last Updated: 12-03-22 10:12 AM
““““““““ ¢ Prof. J. Elder

IIIIIIIIII

DFS Example on Undirected Graph

unexplored

being explored

finished

unexplored edge

discovery edge

|| oce

back edge

CSE 2011
YO R K ' -27 - Last Updated: 12-03-22 10:12 AM
““““““““““ Prof. J. Elder

IIIIIIIIII

Example (cont.)

CSE 2011
YO R K ' -28 - Last Updated: 12-03-22 10:12 AM
“““““ £ Prof. J. Elder

IIIIIIIIII

DFS Algorithm Pattern

DFS(G)
Precondition: G is a graph
Postcondition: all vertices in G have been visited
for each vertex u e V[G]
color[u] = BLACK //initialize vertex
for each vertex u e V[G]
if colorfu] = BLACK //as yet unexplored
DFS-Visit(u)

’

\

[

CSE 2011
YO RK ' - 29 - Last Updated: 12-03-22 10:12 AM
“““““““““ Prof. J. Elder

UUUUUUUUUU

DFS Algorithm Pattern

DFS-Visit (u)
Precondition: vertex u is undiscovered
Postcondition: all vertices reachable from u have been processed
colourfu] « RED
for each v € Adj[u] //explore edge (u,v)
If color[v] = BLACK

DFS-Visit(v) /’\

colour[u]l < GRAY

CSE 2011
YOR I<E ' - 30 - Last Updated: 12-03-22 10:12 AM
““““““““ Prof. J. Elder

UUUUUUUUUU

Properties of DFS

Property 1

DFS-Visit(u) visits all the
vertices and edges in the
connected component of u

Property 2 /’\
The discovery edges :

labeled by DFS-Visit(u) |
form a spanning tree of the :
connected component of u -

CSE 2011
UYQBSIS ' Prof. J. Elder -31- Last Updated: 12-03-22 10:12 AM

UUUUUUUUUU

DFS Algorithm Pattern

DFS(G)
Precondition: G is a graph
Postcondition: all vertices in G have been visited
for each vertex u e V[G] b
coloru] = BLACK //initialize vertex ~\. total work
for each vertex u e V[G]) = 6(V)
if colorfu] = BLACK //as yet unexplored
DFS-Visit(u)

Q

\

[

CSE 2011
YORKN _32- Last Updated: 12-03-22 10:12 AM
““““““““ Prof. J. Elder

UUUUUUUUUU

DFS Algorithm Pattern

DFS-Visit (u)
Precondition: vertex u is undiscovered
Postcondition: all vertices reachable from u have been processed
colourfu] « RED
for each v e Adj[u] //lexplore edge (u,v))

if color{v] = BLACK ot w:;lf ;
DFS-Visit(v) = VEZVI jlv1l=6(E)
colour[u] « GRAY -

Thus running time = 6(V + E) M
(assuming adjacency list structure)

CSE 2011
YOR I<E ' -33 - Last Updated: 12-03-22 10:12 AM
““““““““ Prof. J. Elder

IIIIIIIIII

Variants of Depth-First Search

» In addition to, or instead of labeling vertices with colours, they can be
labeled with discovery and finishing times.

» ‘Time’ is an integer that is incremented whenever a vertex changes state

O from unexplored to discovered

L from discovered to finished

» These discovery and finishing times can then be used to solve other
graph problems (e.g., computing strongly-connected components)

Input: Graph & =(V,E) (directed or undirected)

Output: 2 timestamps on each vertex:

d[v] = discovery time.
f[v] = finishing time. 1<dvl<flv]<2|V|

CSE 2011
YO RK ' -34 - Last Updated: 12-03-22 10:12 AM
“““““““““ Prof. J. Elder

IIIIIIIIII

DFS Algorithm with Discovery and Finish Times
DFS(G)
Precondition: G is a graph
Postcondition: all vertices in G have been visited
for each vertex u € V[G]
color[u] = BLACK //initialize vertex
time < 0
for each vertex u € V[G]
if color[u] = BLACK //as yet unexplored
DFS-Visit(u) f .

\

[

CSE 2011
UYQBSIS ' Prof. J. Elder -35- Last Updated: 12-03-22 10:12 AM

UUUUUUUUUU

DFS Algorithm with Discovery and Finish Times

DFS-Visit (u)
Precondition: vertex u is undiscovered
Postcondition: all vertices reachable from u have been processed
colour[u] <« RED
time « time +1
d[u] « time
for each v € Adj[u] //explore edge (u,v)
if color[v] = BLACK /\
DFS-Visit(v)
colour[u]l < GRAY
time « time + 1
flu] < time

CSE 2011
UYQBSIS ' Prof. J. Elder -36 - Last Updated: 12-03-22 10:12 AM

UUUUUUUUUU

Other Variants of Depth-First Search

» The DFS Pattern can also be used to

O Compute a forest of spanning trees (one for each call to DFS-
visit) encoded in a predecessor list 11[u]

] Label edges in the graph according to their role in the search
(see textbook)

< Tree edges, traversed to an undiscovered vertex

<> . traversed to a descendent vertex on the current
spanning tree

<> Back edges, traversed to an ancestor vertex on the current
spanning tree

< Cross edges, traversed to a vertex that has already been
discovered, but is not an ancestor or a descendent

YORK CSE 2011
' -37 - Last Updated: 12-03-22 10:12 AM
Prof. J. Elder

End of Lecture

Tuesday, Mar 20, 2012

CSE 2011
YO RK ' -38 - Last Updated: 12-03-22 10:12 AM
“““““““““ Prof. J. Elder

IIIIIIIIII

Example DFS on Directed Graph

CSE 2011
YO RK ' -39 - Last Updated: 12-03-22 10:12 AM
“““““““““ Prof. J. Elder

IIIIIIIIII

Found
Not Handled
Stack

<node,# edges>

/

Last Updated: 12-03-22 10:12 AM

DFS Found
Not Handled

Stack
<node,# edges>

s,0

/

/ Last Updated: 12-03-22 10:12 AM

DFS Found
Not Handled

1/

Stack

<node,# edges>

/

—>QC| /
g
V.
J
a,0
s, 1
m/ /

/ Last Updated: 12-03-22 10:12 AM

DFS Found
Not Handled

1/

Stack

<node,# edges>

/

—>QC| /
g
V.
L/ 1]¢c,0
a,l
s, 1
m /

/ Last Updated: 12-03-22 10:12 AM

DFS Found
Not Handled

1/

Stack

<node,# edges>

/

—QC| /
g
! h,0
LIV P
a,l
S, 1
m /

/ Last Updated: 12-03-22 10:12 AM

DFS Found

Not Handled
g [1 Stack
— <node,# edges>
—>QC /
3/C g
k,0
V. |h,
L l]e 1
a,l
4/ S, 1
m/

YORK | CsE2on

.......... et 0 [t -a5-]|/ Last Updated: 12-03-22 10:12 AM

IIIIIIIIII

DFS Found
Not Handled

S [1 Stack
<node,# edges>

<
=

\9»
3) A L N
P

m\’QDO

\9
A 2k
r

5/6

- 46 1 / Last Updated: 12-03-22 10:12 AM

3/

DFS

1/

5/6

Found
Not Handled
Stack
<node,# edges>

9
\
P

0}
\9

\ B

r

Last Updated: 12-03-22 10:12 AM

DFS Found
Not Handled

S [1 Stack
<node,# edges>

3/

4/7

5/6

- 48 1 / Last Updated: 12-03-22 10:12 AM

DFS Found
Cross Edge to handled node: d[h]d[i] Not Handled
' 1 Stack

<node,# edges>

—>QC /
g
' i1
L 1le2
a,l
s, 1
m/ /

5/6

- 49 1 / Last Updated: 12-03-22 10:12 AM

DFS Found
Not Handled

S [1 Stack
<node,# edges>

3/

4/7

5/6

- 50 1 / Last Updated: 12-03-22 10:12 AM

3/

4/7

® —
YORK[JJ Cse2or k

IIIIIIIIII
IIIIIIIIII

hO

Prof. J. Elder

DFS
1/
/ g
5/6
9/

I c,2

Found
Not Handled
Stack
<node,# edges>

1,0
1,3

a,l
s, 1

Last Updated: 12-03-22 10:12 AM

3/

4/7

® —
YORK[JJ Cse2or k

IIIIIIIIII
IIIIIIIIII

hO

Prof. J. Elder

DFS
1/
/ g
5/6
9/

I c,2

Found
Not Handled
Stack
<node,# edges>

1,1
1,3

a,l
s, 1

Last Updated: 12-03-22 10:12 AM

3/

4/7

DFS

1/

5/6

Found
Not Handled
Stack
<node,# edges>

9/10

Last Updated: 12-03-22 10:12 AM

DFS

1/

11/

5/6

Found
Not Handled
Stack
<node,# edges>

9/10

Last Updated: 12-03-22 10:12 AM

DFS

1/

11/

5/6

Found
Not Handled
Stack
<node,# edges>

J,0
g1
1,4
c,2
a,l
s, 1

[]
-119/10

Last Updated: 12-03-22 10:12 AM

— -

5/6

11/

=
-

g

///”’ i94
- ﬁ’ 1211 ¢,2

Found
Not Handled
Stack

L <node,# edges>

[]
-119/10

el 1
PN
g1

a,l

s, 1

Last Updated: 12-03-22 10:12 AM

DFS

1/

5/6

11/

Found
Not Handled
Stack
<node,# edges>
D /
€L 1m,0
g j,21
g,
V.4
]| 12/ 092
a,l
s, 1
’3 13/
9/10 Last Updated: 12-03-22 10:12 AM

DFS

1/

5/6

11/

g

Found
Not Handled
Stack
<node,# edges>

m, 1
J,2

g1

: 1,4
]| 12/ c,2
a,l
s, 1

|/

13/

[]
-119/10

Last Updated: 12-03-22 10:12 AM

DFS

1/

5/6

11/

/‘ mli13/14
(J

Found
Not Handled
Stack
<node,# edges>

-119/10

el /
J,2
g1
.cb 12/ é’fzt
a,l
s, 1

Last Updated: 12-03-22 10:12 AM

DFS

1/

5/6

11/

Found
Not Handled
Stack
<node,# edges>

e /
g1
V.o |i4
J112/15 C,2
a,l
s, 1

13/14

[]
-119/10

Last Updated: 12-03-22 10:12 AM

DFS Found
Not Handled

Stack
<node,# edges>

J112/15 C,2

* mili3/14
T /
(J

- 61 1 9/10 Last Updated: 12-03-22 10:12 AM

3/

4/7

® —
YORK[JJ Cse2or k

IIIIIIIII

hO

£

UUUUUUUUU

Y

Prof. J. Elder

DFS

5/6

Found
Not Handled
Stack
<node,# edges>

/
f,0
: 1,5
J112/15 C,2
a,l
s, 1
13/14

Last Updated: 12-03-22 10:12 AM

DFS Found
Not Handled

Stack
<node,# edges>

f,1
: 1,5
J112/15 092
a,l
s, 1

* mili3/14
6 /
(J

-63 1 9/10 Last Updated: 12-03-22 10:12 AM

DFS Found
Not Handled

Stack
<node,# edges>

3/
C

: 1,5

J112/15 092

a,l

417 S, 1

* mili3/14
6 /
(J

- 64 1 9/10 Last Updated: 12-03-22 10:12 AM

3/

4/7

® —
YORK[JJ Cse2or k

IIIIIIIIII
UUUUUUUUUU

Prof. J. Elder

DFS

5/6

Found
Not Handled

Stack
<node,# edges>

/
12/15 C,2
a,l
s, 1

13/14

Last Updated: 12-03-22 10:12 AM

DFS Found

Forward/Edge Not Handled
Stack
<node,# edges>

/

12/15 C,3
a,l
s, 1

* mili3/14
e /
(J

CSE 2011 k. N
YORKE 0 Prof. J. Elder -66-]| 9/10 Last Updated: 12-03-22 10:12 AM

UUUUUUUUUU

3/19

4/7

® —
YORK[JJ Cse2or k

IIIIIIIIII
UUUUUUUUUU

Prof. J. Elder

DFS

5/6

Found

Not Handled

12/15

13/14

Stack

<node,# edges>

Last Updated: 12-03-22 10:12 AM

3/19

4/7

® —
YORK[JJ Cse2or k

IIIIIIIIII
IIIIIIIIII

DFS

h.,

/.P’

5/6

Found

Not Handled

j12/15

13/14

Prof. J. Elder

Stack

<node,# edges>

a,2
s, 1

Last Updated: 12-03-22 10:12 AM

3/19

4/7

® —
YORK[JJ Cse2or k

IIIIIIIIII
IIIIIIIIII

Prof. J. Elder

DFS

5/6

Found

Not Handled

12/15

13/14

Stack

<node,# edges>

s, 1

Last Updated: 12-03-22 10:12 AM

DFS
S |1
2/20
de
3/19
C'\.
o 1

= h./

® —
YORK[JJ Cse2or k

IIIIIIIIII
IIIIIIIIII

5/6

Found

Not Handled

Stack

<node,# edges>

j12/15

13/14

Prof. J. Elder

d,0
S,2

Last Updated: 12-03-22 10:12 AM

3/19

4/7

® —
YORK[JJ Cse2or k

IIIIIIIIII
IIIIIIIIII

2/20

Prof. J. Elder

DFS

1/

5/6

Found

Not Handled

Stack

<node,# edges>

12/15

13/14

d,1
S,2

Last Updated: 12-03-22 10:12 AM

3/19

4/7

® —
YORK[JJ Cse2or k

IIIIIIIIII
IIIIIIIIII

2/20

Prof. J. Elder

DFS

1/

5/6

Found

Not Handled

Stack

<node,# edges>

12/15

13/14

d,2
S,2

Last Updated: 12-03-22 10:12 AM

DFS
S |1
2120
a.
3/19
C‘\.
o 1

AlT ho,/

® —
YORK[JJ Cse2or k

IIIIIIIIII
IIIIIIIIII

5/6

Found

Not Handled

Stack

<node,# edges>

22/

j12/15

13/14

Prof. J. Elder

e,(

d,3
S,2

Last Updated: 12-03-22 10:12 AM

DFS Found

Not Handled
g [1/ Stack
= — <node,# edges>
a.
22/
3/19
Co—
12115 | e, 1
d,3
417 S,2

* mili3/14
e /
(J

CSE 2011 k‘«
YORKE 0 Prof. J. Elder -74-][910 Last Updated: 12-03-22 10:12 AM

IIIIIIIIII

DFS Found

Not Handled
g [1 Stack
= — <node,# edges>
a’.
0C|22/23
3/19
Co—
e
j12/15
/. lk d93
47 |h® S,2

* mili3/14
e /
(J

CSE 2011 k‘«
YORKE 0 Prof. J. Elder -75-] 910 Last Updated: 12-03-22 10:12 AM

IIIIIIIIII

DFS Found
Not Handled

Stack
<node,# edges>

22/23
3/19
co—
12/15
4/7 S,2

* mili3/14
e /
(J

CSE 2011 k‘«
YORKE 0 Prof. J. Elder -76-] [9/10 Last Updated: 12-03-22 10:12 AM

IIIIIIIIII

DFS Found
Not Handled

Stack
<node,# edges>

22123
319
co—
12/15
417 S,3

* mili3/14
e /
(J

CSE 2011 k‘«
YORKE 0 Prof. J. Elder -77-] 910 Last Updated: 12-03-22 10:12 AM

IIIIIIIIII

/‘ik

2/20
a (]
3/19
Co—
~— @
47 |h®

(P
YORK ' CSE 2011 k

IIIIIIIIII
IIIIIIIIII

f

Prof. J. Elder

L

17/18

DFS

1/

8/19

5/6

Found

Not Handled
Stack
o= <node,# edges>
0C|22/23

j12/15

13/14

Last Updated: 12-03-22 10:12 AM

/‘ik

2/20
a (]
3/19
Co—
~— @
47 |h®

(P
YORK ' CSE 2011 k

IIIIIIIIII
IIIIIIIIII

f

Prof. J. Elder

L

17/18

DFS

1/

8/19

5/6

Found

Not Handled
Stack
o= <node,# edges>
0C|22/23

j12/15

13/14

Last Updated: 12-03-22 10:12 AM

/‘P’

2/20
d o
3/19
Co—
~— @
47 |h®

(P
YORK ' CSE 2011 k

UUUUUUU £
UUUUUUUUUU

f

Prof. J. Elder

L

17/18

DFS

1/

8/19

5/6

Found

Not Handled
Stack
o= <node,# edges>
0C|22/23

AOJ 12/15

13/14

Last Updated: 12-03-22 10:12 AM

2/20
d o
3/19
Co—
~— @
47 |h®

(P
YORK ' CSE 2011 k

UUUUUUU £
UUUUUUUUUU

f

Prof. J. Elder

L

17/18

DFS

1/

8/19

5/6

Found

Not Handled
Stack
o= <node,# edges>
0C|22/23

12/15

/‘ mli13/14
(J

Last Updated: 12-03-22 10:12 AM

DFS Found
Not Handled

Stack
<node,# edges>

) 25/26

22/23
3/19
Co—
12/15
4/7 894

* mili3/14
6 /
(J

CSE 2011 k\‘ i
YORK ' - 82 1 9/10 Last Updated: 12-03-22 10:12 AM
““““““““ ¢ Prof. J. Elder

IIIIIIIIII

3/19

Tree Edges

Back Edges
Forward Edges S | 1/27
Cross Edges

2/20

Co—

de

Finished!

4/7

®
YORK ||| CseE2o k

UUUUUUUUU £
||||||||||

—® {|17/18

8/19

/‘ 11/16\

DFS

25/26

0C|22/23

AOJ 12/15

Found
Not Handled
Stack
<node,# edges>

/‘P’

h{ﬁc};

5/6

Prof. J. Elder

13/14

Last Updated: 12-03-22 10:12 AM

Classification of Edges in DFS

1. Tree edges are edges in the depth-first forest G_. Edge (u, v) is a tree edge if
v was first discovered by exploring edge (u, v).

2. Back edges are those edges (u, v) connecting a vertex u to an ancestor vin a
depth-first tree.

3. Forward edges are non-tree edges (u, v) connecting a vertex u to a
descendant v in a depth-first tree.

4. Cross edges are all other edges. They can go between vertices in the same
depth-first tree, as long as one vertex is not an ancestor of the other.

[2/20]
(S
c ° m
[8/19]

12/19

/o
.,
¢ [13/14
m
P 5/6
L)

CSE 2011
YORKRN| -84 - k 18P Updated: 12-03-22 10:12 AM

““““““““ Prof. J. Elder

UUUUUUUUUU

417
h

Classification of Edges in DFS

1. Tree edges: Edge (u, v)is a tree edge if v was black when (u, v) traversed.
2. Back edges: (u, v)is a back edge if v was red when (u, v) traversed.

3. Forward edges: (u, v) is a forward edge if v was gray when (u, v) traversed
and d[v] > d[u].

4. Cross edges (u,v) is a cross edge if v was gray when (u, v) traversed and
d[v] < d[u].

Classifying edges can help to identify ot

properties of the graph, e.g., a graph is @ 7 i
acyclic iff DFS yields no back edges. /‘
\ . @
\ @ e

. 142

/1

YORK CSE 2011 / mﬁ
......... [Prof. J. Elder -85- kK 6 "l Updated’ 12-03-22 10:12 AM

IIIIIIIIII
A £\

DFS on Undirected Graphs

» |In a depth-first search of an undirected graph, every
edge is either a tree edge or a back edge.

» Why?

CSE 2011
UYQBSIg ' Prof. J. Elder - 86 - Last Updated: 12-03-22 10:12 AM

UUUUUUUUUU

DFS on Undirected Graphs

»> Suppose that (u,v) is a forward edge or a
cross edge in a DFS of an undirected graph.

> (u,v) is a forward edge or a cross edge when v :
is already handled (grey) when accessed from ’
u.
u

» This means that all vertices reachable from v
have been explored.

» Since we are currently handling u, u must be red. x

» Clearly v is reachable from u. /

» Since the graph is undirected, u must also be . E
reachable from v.

» Thus u must already have been handled: u must
be grey.

» Contradiction!

UYQRSK ' CSE 2011 - 87 - Last Updated: 12-03-22 10:12 AM

Prof. J. Elder

IIIIIIIIII

Applications of Depth-First Search

CSE 2011
YO RK ' - 88 - Last Updated: 12-03-22 10:12 AM
““““““““““ Prof. J. Elder

IIIIIIIIII

DFS Application 1: Path Finding

» The DFS pattern can be used to find a path between two given vertices u and z,
if one exists

» We use a stack to keep track of the current path

» If the destination vertex z is encountered, we return the path as the contents of
the stack

DFS-Path (u, z)
Precondition: u and z are vertices in a graph
Postcondition: a path from u to z is returned, if one exists
colour[u] « RED
push u onto stack
fu=z
return list of elements on stack
for each v € Adj[u] //explore edge (u,v)
if color[v] = BLACK
DFS-Path(v, z)
colour[u]l « GRAY
pop u from stack

YORK ' CSE 2011

Prof. J. Elder -89 - Last Updated: 12-03-22 10:12 AM

DFS Application 2: Cycle Finding

» The DFS pattern can be used to find a cycle in a graph, if one exists
» We use a stack to keep track of the current path
> If a back edge is encountered, we return the cycle as the contents of the stack

DFS-Cycle (u)
Precondition: u is a vertex in a graph G
Postcondition: a cycle reachable from u is returned, of one exists
colourfu] « RED
push u onto stack
for each v € Adj[u] //explore edge (u,v)
if color[v] = RED //back edge
return top of stack down to v
else if color[v] = BLACK
DFS-Cycle(v)
colour[u] <« GRAY
pop u from stack

CSE 2011
YO RK ' -90 - Last Updated: 12-03-22 10:12 AM
““““““““ ¢ Prof. J. Elder

IIIIIIIIII

Why must DFS on a graph with a cycle
generate a back edge”?

» Suppose that vertex s is in a connected
component S that contains a cycle C. @

» Since all vertices in S are reachable from
S, they will all be visited by a DFS from s.

> Let v be the first vertex in C reached by a
DFS from s.

» There are two vertices u and w adjacent
to v on the cycle C.

» wlog, suppose u is explored first.

» Since w is reachable from u, w will
eventually be discovered.

» When exploring w's adjacency list, the
back-edge (w, s) will be discovered.

CSE 2011
YORK ' -91 - Last Updated: 12-03-22 10:12 AM
””””””””” Prof. J. Elder

IIIIIIIIII

DFS Application 3. Topological Sorting
(e.g., putting tasks in linear order)

Note: The textbook also describes a breadth-
first TopologicalSort algorithm (Section 13.4.3)

CSE 2011
YO RK ' -92 - Last Updated: 12-03-22 10:12 AM
””””””””” Prof. J. Elder

IIIIIIIIII

DAGs and Topological Ordering

» A directed acyclic graph (DAG) is a
digraph that has no directed cycles

» A topological ordering of a digraph Q G
is @ numbering

vl, ...’ vn e

of the vertices such that for every
edge (v;, v;), we have i <j e

> Example: in a task scheduling ° DAG G
digraph, a topological ordering is a
task sequence that satisfies the v, Vs

precedence constraints

Theorem V)

A digraph admits a topological
ordering if and only if it is a DAG

Topological
ordering of G

YORK ' CSE 2011 oo

““““““““ : Prof. J. Elder

IIIIIIIIII

Last Updated: 12-03-22 10:12 AM

Topological (Linear) Order

underwear socks
® ®
pantsg .3 shoes
&
underw% @%‘ socks
pants " underwear
socks) pants
shoes 2 shoes

YORK CSE 2011
' -94 - Last Updated: 12-03-22 10:12 AM
Prof. J. Elder

IIIIIIIIII
IIIIIIIIII

Topological (Linear) Order

underwear. .socks

pantsg _4shoes Invali

YORK ' CSE 2011

“““““““““ Prof. J. Elder

IIIIIIIIII

Last Updated: 12-03-22 10:12 AM

Algorithm for Topological Sorting

» Note: This algorithm is different than the one
iIn Goodrich-Tamassia

Method TopologicalSort(G)

H € G // Temporary copy of G

n € G.numVertices()

while H is not empty do
Let v be a vertex with no outgoing edges
Label v € n
n€n-1
Remove v from H //as well as edges involving v

CSE 2011
YO RK ' - 96 - Last Updated: 12-03-22 10:12 AM
“““““““““ Prof. J. Elder

IIIIIIIIII

Linear Order

d Pre-Condition:
A Directed Acyclic Graph

b Ih (DAG)
C 1 Post-Condition:
I. Find one valid linear order
1
e k Algorithm:
/ *Find a terminal node (sink).
S Put it last 1n sequence. O(|VI)
£ o ol *Delete from graph & repea
i
Running time:) i = O(|V|2)
="
] Can we do better?
YORK ' CSE 2011 ceeee

IIIIIIIIII
UUUUUUUUUU

Prof. J. Elder - 97 - Last Updated: 12-03-22 10:12 AM

YORK

IIIIIIIIII
UUUUUUUUUU

Linear Order
Alg: DFS

o o o o

CSE 2011 o8
Prof. J. Elder e

T

Found
Not Handled
Stack

Q.o =H

Last Updated: 12-03-22 10:12 AM

Linear Order

b I/\II?

1 §
| /fk

> N

d

e
f

Found
Not Handled
Stack

1

g
S
d

When node is popped off stack, insert at front of linearly-ordered “to do” list.

Linear Order:
YORK ' CSE 2011 o

“““““““““ Prof. J. Elder

IIIIIIIIII

Last Updated: 12-03-22 10:12 AM

Linear Order
Alg: DFS

b h
C I Ii
A
e 1 Ik
<
f |
Linear Order:
YORK | CSE20 2100 -

IIIIIIIIII
UUUUUUUUUU

Prof. J. Elder

1,f

Found
Not Handled
Stack

Q.09

Last Updated: 12-03-22 10:12 AM

Linear Order
Alg: DFS

b h
C I Ii
A
e 1 Ik
<
f |
Linear Order:
YORK | CSE20 2101 -

IIIIIIIIII
UUUUUUUUUU

Prof. J. Elder

gLt

Found
Not Handled
Stack

Q.0

Last Updated: 12-03-22 10:12 AM

Linear Order
Alg: DFS Found
Not Handled

a
/\ Stack

bI Ih
°1 4
N P
<

Linear Order;
YORK ' CSE 2011 -102 - eDgalbf Last Updated: 12-03-22 10:12 AM

“““““““““ Prof. J. Elder

IIIIIIIIII

YORK

IIIIIIIIII
UUUUUUUUUU

Linear Order
Alg: DFS

b h
C I Ii
A
e 1 Ik
o<
f \ |
Linear Order:
J cse2om . die,g LT

Prof. J. Elder

Found
Not Handled
Stack

Last Updated: 12-03-22 10:12 AM

Linear Order
Alg: DFS

b h
C I Ii
A
e 1 Ik
<
f |
Linear Order:
YORK[JJ Cse2ot . doe,g LT

IIIIIIIIII
UUUUUUUUUU

Prof. J. Elder

Found
Not Handled
Stack

Last Updated: 12-03-22 10:12 AM

Linear Order
Alg: DFS Found
Not Handled

a
/\ Stack
h

Jo
| 1
f

'

S
N, j

Linear Order: k,d,e,g,l,f

CSE 2011
YO RK ' -105 - Last Updated: 12-03-22 10:12 AM
“““““““““ Prof. J. Elder

IIIIIIIIII

Linear Order
Alg: DFS Found
Not Handled

a
/\ Stack
h

Jo
| 1
f

'

S
\1

Linear Order: j,k,d,e,g,l,f

CSE 2011
YO RK ' - 106 - Last Updated: 12-03-22 10:12 AM
“““““““““ Prof. J. Elder

IIIIIIIIII

Linear Order
Alg: DFS Found
Not Handled

a
/\ Stack
h

Jo
| 1
f

'

S
\1

Linear Order: i,j,k,d,e,g,laf

CSE 2011
YO RK ' -107 - Last Updated: 12-03-22 10:12 AM
“““““““““ Prof. J. Elder

IIIIIIIIII

Linear Order
Alg: DFS Found
Not Handled

a
/\ Stack
h

Jo
| 1
f

'

S
\1 .

Linear Order: i,j,k,d,e,g,laf

CSE 2011
YO RK ' - 108 - Last Updated: 12-03-22 10:12 AM
“““““““““ Prof. J. Elder

IIIIIIIIII

Linear Order
Alg: DFS Found

9 Not Handled
/\ Stack

Ih
>

1 f.

@QOU‘

1

Linear Order: C,i,j,k,d,e,g,laf
YORK ' CSE 2011

EEEEEEEEE Prof. J. Elder -109 -

IIIIIIIIII

Last Updated: 12-03-22 10:12 AM

Linear Order
Alg: DFS Found

9 Not Handled
/\ Stack

Ih
>

1 f.

@QOU‘

1

Linear Order: b,C,i,j,k,d,e,g,l,f
YORK ' CSE 2011

EEEEEEEEE Prof. J. Elder - 110 -

IIIIIIIIII

Last Updated: 12-03-22 10:12 AM

Linear Order
Alg: DFS Found

9 Not Handled
/\ Stack

Ih
>

1 f.

@QOU‘

1

Linear Order: b,c,i,j,k,d,e,g,l,f
YORK ' CSE 2011

EEEEEEEEE Prof. J. Elder - 11 -

IIIIIIIIII

Last Updated: 12-03-22 10:12 AM

Linear Order
Alg: DFS Found
Not Handled

a
/ \ Stack
h

2
l l.

>\

Linear Order: h,b,c,i,j,k,d,e,g,l,f
YORK ' CSE 2011

EEEEEEEEE Prof. J. Elder -12-

IIIIIIIIII

@QOU‘

Last Updated: 12-03-22 10:12 AM

Linear Order

Found
9 Alg: DFS Not Handled

/ \ Stack
h

Linear Order: a,h,b,c,1,5,k,d,e,g,1,f Done!
YORK ' CSE 2011

'''''''''' Prof. J. Elder - 13-

IIIIIIIIII

Last Updated: 12-03-22 10:12 AM

DFS Algorithm for Topologial Sort

» Makes sense. But how do we prove that it works?

CSE 2011
YORK ' -114 - Last Updated: 12-03-22 10:12 AM
““““““““““ Prof. J. Elder

IIIIIIIIII

Linear Order

Proof: Consider each edge

*Case 1: u goes on stack first before v.

*Because of edge,

v goes on before u comes off
v comes off before u comes off
v goes after u in order. ©

Ue—>0 V
YORK | CSE20 115. W...V..

“““““““““ Prof. J. Elder

IIIIIIIIII

Found
Not Handled
Stack

Last Updated: 12-03-22 10:12 AM

Linear Order Found

Proof: Consider each edge Not Handled
*Case 1: u goes on stack first before v. Stack
*Case 2: v goes on stack first before u.
v comes off before u goes on.
v goes after u in order. ©

Ue—0 VY

CSE 2011
YORK ' - 116 - U... V... Last Updated: 12-03-22 10:12 AM
“““““““““ Prof. J. Elder

IIIIIIIIII

Linear Order

Found
Proof: Consider each edge Not Handled
*Case 1: u goes on stack first before v. Stack

*Case 2: v goes on stack first before u.
v comes off before u goes on.
Case 3: v goes on stack first before u.

u goes on before v comes off.
Panic: u goes after v in order. ®

*Cycle means linear order (u>
. is impossible © v
The nodes 1n the stack form a path starting at s.

Ue—>0 V
YORK | CSE20 V.. U...

EEEEEEEEE Prof. J. Elder - 17 -

IIIIIIIIII

Last Updated: 12-03-22 10:12 AM

Linear Order

Found
Alg: DFS Not Handled

a
/ \ Stack
h

2
l l.

>\ Analysis: O(V+E)

Linear Order: a,h,b,c,1,],k,d,e,g,1,f Done!
YORK ' CSE 2011

EEEEEEEEE Prof. J. Elder - 118 -

IIIIIIIIII

@QOU‘

Last Updated: 12-03-22 10:12 AM

End of Lecture

March 22, 2012

CSE 2011
UYQRSKE ' -119 - Last Updated: 12-03-22 10:12 AM
Prof. J. Elder

IIIIIIIIII

DFS Application 3. Topological Sort

Topological-Sort(G)
Precondition: G is a graph
Postcondition: all vertices in G have been pushed onto
stack in reverse linear order
for each vertex u € V[G]
color[u] = BLACK //initialize vertex
for each vertex u e V[G]
if color[u] = BLACK //as yet unexplored

Topological-Sort-Visit(u) .

\
[

CSE 2011
YORK ' -120 - Last Updated: 12-03-22 10:12 AM
“““““““““ Prof. J. Elder

UUUUUUUUUU

DFS Application 3. Topological Sort

Topological-Sort-Visit (u)
Precondition: vertex u Is undiscovered
Postcondition: u and all vertices reachable from u
nave been pushed onto stack in reverse linear order

colourfu] « RED

for each v € Adj[u] //explore edge (u,Vv)

if color[v] = BLACK
Topological-Sort-Visit(v)
push u onto stack
colour[u] <« GRAY

YORK ' CSE 2011

,,,,,,,,,, i B - 121 - Last Updated: 12-03-22 10:12 AM

UUUUUUUUUU

Breadth-First Search

CSE 2011
YO RK ' -122 - Last Updated: 12-03-22 10:12 AM
““““““““““ Prof. J. Elder

IIIIIIIIII

Breadth-First Search

» Breadth-first search (BFS) is a general technique for traversing a graph
» A BFS traversal of a graph G

O Visits all the vertices and edges of G
[Determines whether G is connected
O Computes the connected components of G

O Computes a spanning forest of G
» BFS on a graph with |V] vertices and |E| edges takes O(|V|+E|) time

» BFS can be further extended to solve other graph problems
O Cycle detection

O Find and report a path with the minimum number of edges between two
given vertices

CSE 2011
YO RK ' -123 - Last Updated: 12-03-22 10:12 AM
“““““““““ : Prof. J. Elder

IIIIIIIIII

BFS Algorithm Pattern

BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: all vertices in G reachable from s have been visited
for each vertex u € V[G]
colorfu] « BLACK //initialize vertex
colour[s] « RED
Q.enqueue(s)
while Q # 9
u < Q.dequeue()
for each v € Adj[u] //explore edge (u,Vv)
if color[v] = BLACK
colour[v] <« RED
Q.enqueue(v)
colour[u] « GRAY

CSE 2011
YORK ' -124 - Last Updated: 12-03-22 10:12 AM
“““““““““ Prof. J. Elder

UUUUUUUUUU

BFS is a Level-Order Traversal

» Notice that in BFS exploration takes place on a
wavefront consisting of nodes that are all the same
distance from the source s.

» We can label these successive wavefronts by their
distance: L, L4, ...

CSE 2011
YO RK ' -125 - Last Updated: 12-03-22 10:12 AM
””””””””” Prof. J. Elder

IIIIIIIIII

BFS Example

G undiscovered
0 discovered (on Queue)

finished

- —

unexplorededge @ ---7ES

—_—p discovery edge

— = = p Cross edge

—
-

\

1

1

1

1

1

P

—————

CSE 2011
YO RK ' -126 - Last Updated: 12-03-22 10:12 AM
“““““““““ : Prof. J. Elder

IIIIIIIIII

BFS Example (cont.)

- ———

- ——

- ——

- ———

N ———————

N ———————

CSE 2011

Last Updated: 12-03-22 10:12 AM

-127 -

Prof. J. Elder

£

s u
TY

BFS Example (cont.)

- ——

- ———

- ———

CSE 2011

Last Updated: 12-03-22 10:12 AM

- 128 -

Prof. J. Elder

£

rRor u
1 TY

Properties

Notation
G,: connected component of s

Property 1

BFS(G, s) visits all the vertices and
edges of G,

Property 2

The discovery edges labeled by
BFS(G, s) form a spanning tree T, of
G

A

Property 3
For each vertex vin L;

O The path of T, from stovhasi L,
edges

4 Every path from s to v in G, has at
least i edges

_—————

YORK ' CSE 2011

,,,,,,,,, E i B -129- Last Updated: 12-03-22 10:12 AM

IIIIIIIIII

Analysis

» Setting/getting a vertex/edge label takes O(1) time

» Each vertex is labeled three times
O once as BLACK (undiscovered)

O once as RED (discovered, on queue)
[once as GRAY (finished)

» Each edge is considered twice (for an undirected graph)
» Each vertex is placed on the queue once

» Thus BFS runs in O(|V]+|E]|) time provided the graph is
represented by an adjacency list structure

CSE 2011
YO RK ' - 130 - Last Updated: 12-03-22 10:12 AM
””””””””” Prof. J. Elder

IIIIIIIIII

Applications

» BFS traversal can be specialized to solve the
following problems in O(|V]+|E|) time:

dCompute the connected components of G
dCompute a spanning forest of G
Find a simple cycle in G, or report that G is a forest

dGiven two vertices of G, find a path in G between

them with the minimum number of edges, or report
that no such path exists

CSE 2011
YORK ' -131 - Last Updated: 12-03-22 10:12 AM
””””””””” Prof. J. Elder

IIIIIIIIII

Application: Shortest Paths on an Unweighted Graph

» Goal: To recover the shortest paths from a source node
S to all other reachable nodes v in a graph.

1 The length of each path and the paths themselves are returned.

> Notes:

O There are an exponential number of possible paths
O Analogous to level order traversal for graphs

O This problem is harder for general graphs than trees because of
cycles!

CSE 2011
YO RK ' -132 - Last Updated: 12-03-22 10:12 AM
““““““““““ Prof. J. Elder

IIIIIIIIII

Breadth-First Search

Input: Graph & =(V,E) (directed or undirected) and source vertex se V.

Output:
d[v]= shortest path distance J(s,v) from s to v, Vve V.
z[v]=u such that (u,v) is last edge on a shortest path from s to v.

> l|ldea: send out search ‘wave’ from s.

> Keep track of progress by colouring vertices:
4 Undiscovered vertices are coloured black
O Just discovered vertices (on the wavefront) are coloured red.

O Previously discovered vertices (behind wavefront) are coloured grey.

CSE 2011
YO RK ' -133 - Last Updated: 12-03-22 10:12 AM
“““““““““ Prof. J. Elder

IIIIIIIIII

BFS Algorithm with Distances and Predecessors
BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: d[u] = shortest distance 6[u] and
n[u] = predecessor of u on shortest path from s to each vertex u in G
for each vertex u e V[G]
d[u] ¢« o
r[u] < null
color[u] = BLACK //initialize vertex
colour[s] <« RED
d[s]< 0
Q.enqueue(s)
while Q # &
u < Q.dequeue()
for each v € Adj[u] //explore edge (u,v)
if color[v] = BLACK
colour[v] <« RED
d[v] « d[u]+1
w[v] < u
Q.enqueue(v)
colour[u]l < GRAY

CSE 2011
YO RK ' -134 - Last Updated: 12-03-22 10:12 AM
UnivEeERSITE Prof. J. Elder

IIIIIIIIII

BFS

Found
Not Handled
Queue

Last Updated: 12-03-22 10:12 AM

Found
Not Handled
Queue

Last Updated: 12-03-22 10:12 AM

BFS

Found
Not Handled
Queue

o 00 O o

Last Updated: 12-03-22 10:12 AM

BFS

Found
Not Handled
Queue

o 00 O o

Last Updated: 12-03-22 10:12 AM

BFS

Found
Not Handled
Queue

= O O 00 o

Last Updated: 12-03-22 10:12 AM

Found
Not Handled
Queue

Last Updated: 12-03-22 10:12 AM

BFS

Found
Not Handled
Queue

Last Updated: 12-03-22 10:12 AM

BFS

Found
q Not Handled
7 /]x Queue
a‘
Lo N
< Iz
C*O/‘f/ 1S C
\ > S NE;
! ¢
h J
\ /

CSE 2011 k.
YORK ' : 1421 Last Updated: 12-03-22 10:12 AM
””””””””” Prof. J. Elder

IIIIIIIIII

BFS

Found
Not Handled
Queue

C
f
m
e
J

Last Updated: 12-03-22 10:12 AM

BFS

Found
Not Handled
Queue

f
m
?’
)
h

1

Last Updated: 12-03-22 10:12 AM

BFS

Found
Not Handled
Queue

Last Updated: 12-03-22 10:12 AM

BFS

Found
Not Handled
Queue

Last Updated: 12-03-22 10:12 AM

BFS

Found
Not Handled
Queue

Last Updated: 12-03-22 10:12 AM

BFS

Found
Not Handled
Queue

Last Updated: 12-03-22 10:12 AM

BFS

Found
Not Handled
Queue

Last Updated: 12-03-22 10:12 AM

BFS

Found
Not Handled
Queue

®
YORK ' CSE 2011 k - i

Prof. J. Elder - 1501 Last Updated: 12-03-22 10:12 AM

IIIIIIIIII
UUUUUUUUUU

BFS

Found
Not Handled
Queue

Last Updated: 12-03-22 10:12 AM

BFS

Found
q Not Handled
T Queue
/ K
a.
/ d / \oe

.ﬁ

| Ve °

YORK CSE 2017 | |
,,,,,,,,,, [orof. 1. Elder - 152} Last Updated: 12-03-22 10:12 AM

IIIIIIIIII

BFS

Found
q Not Handled
T Queue
/ .
dq / ‘\\ K
od / Te
b
A
‘bo{ 7 t \l
A\ / A
o1
ho 4// /
“m
1(./“ o
YORKEE grsof iog dor - 153} Last Updated: 12-03-22 10:12 AM

IIIIIIIIII

BFS

Found
q Not Handled
’ Queue
/ 1\
a.
/ d / e

/
Co— /// /'f.'&
AN

s
1 °
CSE 2011 ™28
YORK ' - 1541 Last Updated: 12-03-22 10:12 AM
””””””””” Prof. J. Elder

IIIIIIIIII

Breadth-First Search Algorithm: Properties
BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: d[u] = shortest distance d[u] and
n[u] = predecessor of u on shortest paths from s to each vertex u in G
for each vertex u e V[G]

Z{Z}::u" » Qs a FIFO queue.

color[u] = BLACK //initialize vertex > Each vertex aSSlgned flnlte d
colourfs] < RED value at most once.
d[s] <0
Q.enqueue(s) » Q contains vertices with d
while Q = @ values {j, ..., i, i+1, ..., i+1}

u < Q.dequeue()

o el e AGT el Etas () » d values assigned are

if color[v] = BLACK monotonically increasing over
colour[v] < RED time.
d[v] <« d[u]+1
nlv]<u
Q.enqueue(v)
colour[u]l < GRAY
YORK ' ot 2. - 155- Last Updated: 12-03-22 10:12 AM

Prof. J. Elder

IIIIIIIIII

Breadth-First-Search is Greedy

» Vertices are handled:
O in order of their discovery (FIFO queue)

J Smallest d values first

CSE 2011
YO RK ' - 156 - Last Updated: 12-03-22 10:12 AM
“““““““““ Prof. J. Elder

IIIIIIIIII

Correctness

Basic Steps:

o~

The shortest path to u & there 1s an edge
has length d fromu to v

There 1s a path to v with length d+1.

CSE 2011
YO RK ' - 157 - Last Updated: 12-03-22 10:12 AM
“““““““““ Prof. J. Elder

IIIIIIIIII

Correctness: Basic Intuition

» When we discover v, how do we know there is not a
shorter path to v?

[Because if there was, we would already have discovered it!

o~

CSE 2011
YO RK ' - 158 - Last Updated: 12-03-22 10:12 AM
””””””””” Prof. J. Elder

IIIIIIIIII

Correctness: More Complete Explanation

» Vertices are discovered in order of their distance from
the source vertex s.

» Suppose that at time {, we have discovered the set V of
all vertices that are a distance of d from s.

» Each vertex in the set V,, of all vertices a distance of
d+1 from s must be adjacent to a vertex in V,

» Thus we can correctly label these vertices by visiting all
vertices in the adjacency lists of vertices in V.

CSE 2011
YO RK ' - 159 - Last Updated: 12-03-22 10:12 AM
””””””””” Prof. J. Elder

IIIIIIIIII

Inductive Proof of BFS

Suppose at step i that the set of nodes S, with distance 6(v) < d. have been
discovered and their distance values d[v] have been correctly assigned.

Further suppose that the queue contains only nodes in S. with d values of d..

Any node v with 6(v)=d. +1 must be adjacent to S.

Any node v adjacentto S, but notin S, must have o6(v)=d. +1.

At step i +1, all nodes on the queue with d values of d. are dequeued and processed.

In so doing, all nodes adjacent to S are discovered and assigned d values of d. +1.

Thus after step / +1, all nodes v with distance 6(v) < d. +1 have been discovered
and their distance values d[v] have been correctly assigned.

Furthermore, the queue contains only nodes in S; with d values of d. +1.

CSE 2011
YO RK ' - 160 - Last Updated: 12-03-22 10:12 AM
”””””””” ¢ Prof. J. Elder

IIIIIIIIII

Correctness: Formal Proof

Input: Graph & =(V,E) (directed or undirected) and source vertex se /.

Output:
d[v]= distance 6(v) from s to v, Vv eV.
n[v] = u such that (u,v) is last edge on shortest path from s to v.

Two-step proof:
On exit:
1. d[v] = o(s,v)VveV

2. d[v]# o(s,v)VveV

CSE 2011
YORK ' -161 - Last Updated: 12-03-22 10:12 AM
““““““““““ Prof. J. Elder

IIIIIIIIII

Claim 1. d is never too small: d[v]=o(s,v)VveV
Proof: There exists a path from s to v of length < d|[v].

By Induction:
Suppose it is true for all vertices thus far discovered (red and grey).

v is discovered from some adjacent vertex u being handled.

—d[v]=d[u]+1
> o(s,u)+1 > y
> 0(8,V) \/\2/‘
since each vertex v is assigned a d value exactly once,
it follows that on exit, d[v] > o(s,v)Vve V.

CSE 2011
YO RK ' -162 - Last Updated: 12-03-22 10:12 AM
””””””””” Prof. J. Elder

IIIIIIIIII

Claim 1. d is never too small: d[v] = o(s,v)VveV
BFS(G,s) Proof: There exists a path from s to v of length < d[v].

Precondition: G is a graph, s is a vertex in G
Postcondition: d[u] = shortest distance d[u] and
n[u] = predecessor of u on shortest paths from s to each vertex u in G
for each vertex u e V[G]
d[u] <
n[u] < null S

color[u] = BLACK //initialize vertex V
colour[s] « RED u

d[s]« 0
Q.enqueue(s)
while Q # & AT '
<L|>: >
R LI>: d[v] > o(s,v)V 'discovered' (red or grey) ve V
for each v € Adj[u] //explore edge (u,v)
if color[v] = BLACK

colour[v] < RED
divldlul+1 D> §(s,u)+1 = 8(s,v)
nlv]l«<u
Q.enqueue(v)
colour[u]l < GRAY
XQBSI& ' CSE 2011 - 163 - Last Updated: 12-03-22 10:12 AM

Prof. J. Elder

IIIIIIIIII

Claim 2. d is never too big: d[v]<od(s,v)VveV

Proof by contradiction:
Suppose one or more vertices receive a d value greater than ¢.
Let v be the vertex with minimum o(s,v) that receives such a d value.

Suppose that v is discovered and assigned this d value when vertex x is dequeued.

Let u be v's predecessor on a shortest path from s to v.

Th _ _
T sew)<dly] siba=ei7] =1
— o(s,v)-1<d[v]-1 S
— d[u] < d[x] \%

d[u] = &(s,v)—1

Recall: vertices are dequeued in increasing order of d value.

— u was dequeued before x.
— d[v]=d[u]+1=0(s,v) Contradiction!

CSE 2011
YORK ' -164 - Last Updated: 12-03-22 10:12 AM
““““““““ = Prof. J. Elder

UUUUUUUUUU

Correctness

Claim 1. d is never too small: d[v] = o(s,v)VveV
Claim 2. d is never too big: d[v]<d(s,v)VveV

= d is just right: d[v]=0(s,v)VveV

CSE 2011
YORI(ﬁ ' - 165 - Last Updated: 12-03-22 10:12 AM
““““““““ Prof. J. Elder

IIIIIIIIII

Progress? > On every iteration one vertex is processed (turns gray). —

BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: d[u] = shortest distance d[u] and

n[u] = predecessor of u on shortest paths from s to each vertex u in G

for each vertex u e V[G]
d[u] < o
n[u] < null
color[u] = BLACK //initialize vertex
colour[s] « RED
d[s]«< 0
Q.enqueue(s)
while Q # &
u < Q.dequeue()
for each v € Adj[u] //explore edge (u,v)
if color[v] = BLACK

colour[v] < RED
dlv] <« d[u]+1
nlv]«<u
Q.enqueue(v)
colour[u]l < GRAY <
UYORK ' CSE 2011 166 -

NIVERSITE
||||||||||

Prof. J. Elder

Last Updated: 12-03-22 10:12 AM

End of Lecture

March 27, 2012

CSE 2011
UYQRSKE ' - 167 - Last Updated: 12-03-22 10:12 AM
Prof. J. Elder

IIIIIIIIII

Optimal Substructure Property

» The shortest path problem has the optimal substructure property:

O Every subpath of a shortest path is a shortest path.

shortest path
A

/ N
How would we Vv
prove this? S u

g N _

' '
shortest path shortest path

» The optimal substructure property
U is a hallmark of both greedy and dynamic programming algorithms.

O allows us to compute both shortest path distance and the shortest paths

themselves by storing only one d value and one predecessor value per
vertex.

CSE 2011
YO RK ' - 168 - Last Updated: 12-03-22 10:12 AM
““““““““ ¢ Prof. J. Elder

IIIIIIIIII

Recovering the Shortest Path

For each node v, store predecessor of v in (V).

s = TUTT(T(v))))

(T v)))
T V))

Predecessor of v is 7(v) = u. (V)

A’

CSE 2011
YO RK ' - 169 - Last Updated: 12-03-22 10:12 AM
““““““““ Prof. J. Elder

IIIIIIIIII

Recovering the Shortest Path

PRINT-PATH(G, s, v)
Precondition: s and v are vertices of graph &
Postcondition: the vertices on the shortest path from s to v have been printed in order
if v=5 then

prit s S = TI(T(T(v))))
else if z[v]=NIL then

print "no path from" s "to" v "exists"

s
j IeDRINT-PATH(é, s, 7[v]) TC(‘E(R(V)))
print v ‘H:(TC(V))
(V)
UYQBSIS ' &SE 2011 - 170 - as}{deated: 12-03-22 10:12 AM

Prof. J. Elder

UUUUUUUUUU

BFS Algorithm without Colours
BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: predecessors r[u] and shortest
distance d[u] from s to each vertex u in G has been computed
for each vertex u e V[G]
d[u] < oo
r[u] < null
d[s]«< O
Q.enqueue(s)
while Q # &
u < Q.dequeue()
for each v € Adj[u] //explore edge (u,v)
e D
dv]< d[u]+1
w[v] < u
Q.enqueue(v)

CSE 2011
YORK ' -171 - Last Updated: 12-03-22 10:12 AM
““““““““ ¢ Prof. J. Elder

UUUUUUUUUU

End of Lecture
&
End of Course

March 29, 2012

CSE 2011
YO RK ' -172 - Last Updated: 12-03-22 10:12 AM
““““““““““ Prof. J. Elder

IIIIIIIIII

Single-Source (Weighted) Shortest Paths

CSE 2011
YO RK ' -173 - Last Updated: 12-03-22 10:12 AM
““““““““““ Prof. J. Elder

IIIIIIIIII

Shortest Path on Weighted Graphs

» BFS finds the shortest paths from a source node s to
every vertex v in the graph.

» Here, the length of a path is simply the number of edges
on the path.

» But what if edges have different ‘costs’?

Cﬁ ﬁ/

CSE 2011
YORK -174 - Last Updated: 12-03-22 10:12 AM
Prof. J. Elder

Weighted Graphs

» |In a weighted graph, each edge has an associated numerical
value, called the weight of the edge

» Edge weights may represent, distances, costs, etc.

» Example:

d In a flight route graph, the weight of an edge represents the
distance in miles between the endpoint airports

CSE 2011
YO RK ' -175 - Last Updated: 12-03-22 10:12 AM
””””””””” Prof. J. Elder

IIIIIIIIII

Shortest Paths

» Given a weighted graph and two vertices u and v, we want to find
a path of minimum total weight between u and v.

O Length of a path is the sum of the weights of its edges.
» Example:

U Shortest path between Providence and Honolulu
» Applications

O Internet packet routing

U Flight reservations

U Driving directions

YORK ' CSE 2011

''''''''' : Prof. J. Elder - 176 -

IIIIIIIIII

Last Updated: 12-03-22 10:12 AM

Shortest Path: Notation

> |Input:
Directed Graph G =(V,E)
Edge weights w: E - R
K
Weight of path p =<vy 1,....v, > =D w(v,_,v,)
/=1

Shortest-path weight from v to v:

p
S(uv)=1¢ min{w(p): u—=--—v} ifJapathu—--—>v,

| otherwise.
Shortest path from v to v is any path p such that w(p) = d(u,v).

CSE 2011
YO RK ' -177 - Last Updated: 12-03-22 10:12 AM
””””””””” Prof. J. Elder

IIIIIIIIII

Shortest Path Properties

Property 1 (Optimal Substructure):

A subpath of a shortest path is itself a shortest path
Property 2 (Shortest Path Tree):

There is a tree of shortest paths from a start vertex to all the other vertices
Example:

Tree of shortest paths from Providence

CSE 2011
YORI{Q l -178 - Last Updated: 12-03-22 10:12 AM
““““““““ Prof. J. Elder

IIIIIIIIII

Shortest path trees are not necessarily unique

(a) | (b)

Single-source shortest path search induces a search tree rooted at s.

This tree, and hence the paths themselves, are not necessarily unique.

CSE 2011
YORI{Q ' -179 - Last Updated: 12-03-22 10:12 AM
puavERsiiE Prof. J. Elder

E
UNIVE

Optimal substructure: Proof

» Lemma: Any subpath of a shortest path is a shortest path
» Proof. Cut and paste.

Suppose this path p is a shortest path from v to v. ()

Then 6(u,v) =w(p)=w(p,)+w(p,)+w(p,).

Now suppose there exists a shorter path x — --- > y.

Then w(p;,) <w(p,,).

Construct p”:

Then w(p’)=w(p,)+w(py)+w(p,) < wip,)+w(p,)+w(p,) =w(p).

So p wasn't a shortest path after all!

CSE 2011
YO RK ' - 180 - Last Updated: 12-03-22 10:12 AM
””””””””” Prof. J. Elder

IIIIIIIIII

Shortest path variants

» Single-source shortest-paths problem: — the
shortest path from s to each vertex v.

» Single-destination shortest-paths problem: Find a
shortest path to a given destination vertex t from
each vertex v.

» Single-pair shortest-path problem: Find a shortest
path from u to v for given vertices u and v.

» All-pairs shortest-paths problem: Find a shortest
path from u to v for every pair of vertices u and v.

CSE 2011
YORK ' -181 - Last Updated: 12-03-22 10:12 AM
“““““““““ Prof. J. Elder

IIIIIIIIII

Negative-weight edges

» OK, as long as no negative-weight cycles are reachable
from the source.

O If we have a negative-weight cycle, we can just keep going
around it, and get w(s, v) = —« for all v on the cycle.

O But OK if the negative-weight cycle is not reachable from the
source.

O Some algorithms work only if there are no negative-weight edges
in the graph.

Last Updated: 12-03-22 10:12 AM

YORK ' CSE 2011 6 g2

“““““““““ Prof. J. Elder

IIIIIIIIII

Cycles

» Shortest paths can’t contain cycles:
1 Already ruled out negative-weight cycles.
[Positive-weight: we can get a shorter path by omitting the cycle.

[Zero-weight: no reason to use them - assume that our solutions
won't use them.

CSE 2011
YO RK ' - 183 - Last Updated: 12-03-22 10:12 AM
““““““““““ Prof. J. Elder

IIIIIIIIII

Shortest-Path Example: Single-Source

CSE 2011
YO RK ' -184 - Last Updated: 12-03-22 10:12 AM
““““““““““ Prof. J. Elder

IIIIIIIIII

Output of a single-source shortest-path algorithm

» For each vertex vin V:

dd[v] = (s, v).
< Initially, d[v]=c.

<>Reduce as algorithm progresses.
But always maintain d[v] = o(s, v).

<-Call d[v] a shortest-path estimate.

T1r[v] = predecessor of v on a shortest path from s.
<-If no predecessor, 1[v] = NIL.

<-1T induces a tree — shortest-path tree.

CSE 2011
YO RK ' - 185 - Last Updated: 12-03-22 10:12 AM
””””””””” Prof. J. Elder

IIIIIIIIII

Initialization

» All shortest-path algorithms start with the
same Initialization:

INIT-SINGLE-SOURCE(V, s)

foreachvinV
do d[v]«=

m[v] « NIL
d[s] — O

CSE 2011
YO RK ' - 186 - Last Updated: 12-03-22 10:12 AM
””””””””” Prof. J. Elder

IIIIIIIIII

Relaxing an edge

» Can we improve shortest-path estimate for v by first going to u
and then following edge (u,v)?
RELAX(u, v, w)
if d[v] > d[u] + w(u, v) then
d[v] <« d[u] + w(u, V)

mT[v]«<— u

v

i T
TN y) / _‘\\ 2 -
I (| A\
&O——© &——®

: RELAX (2e,v,w)

: RELAX(14,v,w)

—~
-
—

A 2

. .
2 N
(S\,)){Z/ 2/ —E)

S

Last Updated: 12-03-22 10:12 AM

YORK ' CSE 2011 i

““““““““ : Prof. J. Elder

IIIIIIIIII

General single-source shortest-path strategy

1. Start by calling INIT-SINGLE-SOURCE
2. Relax Edges

Algorithms differ in the order in which edges are
taken and how many times each edge is relaxed.

CSE 2011
YO RK ' - 188 - Last Updated: 12-03-22 10:12 AM
””””””””” Prof. J. Elder

IIIIIIIIII

Example 1. Single-Source Shortest Path
on a Directed Acyclic Graph

» Basic Idea: topologically sort nodes and relax in linear
order.

» Efficient, since 8[u] (shortest distance to u) has already
been computed when edge (u,v) is relaxed.

» Thus we only relax each edge once, and never have to
backtrack.

CSE 2011
YO RK ' - 189 - Last Updated: 12-03-22 10:12 AM
””””””””” Prof. J. Elder

IIIIIIIIII

Example: Single-source shortest paths in a directed

acyclic graph (DAG)

» Since graph is a DAG, we are guaranteed no
negative-weight cycles.

» Thus algorithm can handle negative edges

] S/ . 1 ™~ T ~gZ
N YN N XL -1~ -2
oo = () —>{ 0o } » oo 2 co M oo)
a2 \Z \ & 4 /
9 4—<\ 4)’
. 2 -_--.--"'.. ..'-'-:_ — 4 _— 2 N
(a)
UYQRSK ' o= 20T -190 - Last Updated

Prof. J. Elder

IIIIIIIIII

: 12-03-22 10:12 AM

Algorithm

DAG-SHORTEST-PATHS (G, w, §)
topologically sort the vertices of G
INITIALIZE-SINGLE-SOURCE(G, s)
for each vertex u, taken in topologically sorted order
do for each vertex v € Adj[u]
do RELAX (i, v, w)

R LV B S

Time: O +E)

CSE 2011
YORI{Q ' -191 - Last Updated: 12-03-22 10:12 AM
““““““““ Prof. J. Elder

IIIIIIIIII

Example

CSE 2011
YORI{Q ' -192 - Last Updated: 12-03-22 10:12 AM
““““““““ Prof. J. Elder

IIIIIIIIII

Example

CSE 2011
YORI{g ' - 193 - Last Updated: 12-03-22 10:12 AM
IREaRIEa Prof. J. Elder

IIIIIIIIII

Example

CSE 2011
UYOBK ' -194 - Last Updated: 12-03-22 10:12 AM
uNIvERSITE Prof. J. Elder

Example

CSE 2011
YORK ' -195 - Last Updated: 12-03-22 10:12 AM
““““““““ ¢ Prof. J. Elder

UUUUUUUUUU

Example

YORK CSE 2011
' - 196 - Last Updated: 12-03-22 10:12 AM
pirt Prof. J. Elder

Example

CSE 2011
YO RK ' -197 - Last Updated: 12-03-22 10:12 AM
““““““““ = Prof. J. Elder

IIIIIIIIII

Correctness: Path relaxation property

Let p=<v,, ¥, ..., v, > beashortest path from s=v, fo v,.
If we relax, in order, (v,,v;), V,%), ..., (v.1.v,),

even intermixed with other relaxations,
then d[v,] = (s, v.).

YORK ' CSE 2011

,,,,,,,,,, Prof. J. Elder - 198 - Last Updated: 12-03-22 10:12 AM

IIIIIIIIII

Correctness of DAG Shortest Path Algorithm

» Because we process vertices in topologically sorted
order, edges of any path are relaxed in order of
appearance in the path.

> Edges on any shortest path are relaxed in order.

O ->By path-relaxation property, correct.

CSE 2011
YO RK ' - 199 - Last Updated: 12-03-22 10:12 AM
””””””””” Prof. J. Elder

IIIIIIIIII

Example 2. Single-Source Shortest Path on
a General Graph (May Contain Cycles)

» This is fundamentally harder, because the first paths we
discover may not be the shortest (not monotonic).

CSE 2011
YO RK ' - 200 - Last Updated: 12-03-22 10:12 AM
””””””””” Prof. J. Elder

IIIIIIIIII

Dijkstra’s algorithm (E. Dijkstra,1959)

» Applies to general, weighted, directed or
undirected graph (may contain cycles).

» But weights must be non-negative. (But they
can be 0!)

» Essentially a weighted version of BFS.
O Instead of a FIFO queue, uses a priority queue.

[Keys are shortest-path weights (d[v]).

» Maintain 2 sets of vertices:

S = vertices whose final shortest-path weights are

determined.
Edsger Dijkstra
 Q = priority queue = V-S.

CSE 2011
YO RK ' -201 - Last Updated: 12-03-22 10:12 AM
””””””””” Prof. J. Elder

IIIIIIIIII

Dijkstra’s Algorithm: Operation

» We grow a “cloud” S of vertices, beginning with s and eventually
covering all the vertices

» We store with each vertex v a label d(v) representing the distance of v
from s in the subgraph consisting of the cloud S and its adjacent vertices

» At each step

L We add to the cloud S the vertex u outside the cloud with the smallest
distance label, d(u)

O We update the labels of the vertices adjacent to u

YORK ' CSE 2011

““““““““““ Prof. J. Elder

IIIIIIIIII

Last Updated: 12-03-22 10:12 AM

Dijkstra's algorithm

DIIKSTRA(G, w, §)

|l INITIALIZE-SINGLE-SOURCE(G, s)
2 S <0

3 0 « VI[G]

4 while Q # ¢

5 do u < EXTRACT-MIN(Q)

6 S «— S U {uj

7 for each vertex v € Adj[u]

8 do RELAX(u, v, w)

= Dijkstrd's algorithm can be viewed as greedy, since it always
chooses the "lightest” vertex inV - S to add to S.

CSE 2011
YO RK ' - 203 - Last Updated: 12-03-22 10:12 AM
““““““““ ¢ Prof. J. Elder

UUUUUUUUUU

Dijkstra's algorithm: Analysis

Analysis:
Using minheap, queue operations takes O(logV) time

DIIKSTRA(G, w, §)

I INITIALIZE-SINGLE-SOURCE(G, 5) O(V)
2 S <0

3 0 <« VI[G]

4 while Q # 0

5 do u < EXTRACT-MIN(Q) O(logV)xO(V) iterations
6 S «— S U {uj

7 for each vertex v € Adju]

8 do RELAX (i, v, w) O(logV')xO(E) iterations

— Running Time is O(ElogV)

CSE 2011
YO R I<E ' -204 - Last Updated: 12-03-22 10:12 AM
““““““““ Prof. J. Elder

IIIIIIIIII

Example Key: [Wlcs = Vertexe Q=V-S

CSE 2011
YORKRI P - 205 - Last Updated: 12-03-22 10:12 AM

IIIIIIIIII

Example

CSE 2011
YOR I<E ' - 206 - Last Updated: 12-03-22 10:12 AM
““““““““ Prof. J. Elder

IIIIIIIIII

Example

YORKJ ¢ | |
.......... ' Prof. J. Elder - 207 - Last Updated: 12-03-22 10:12 AM

IIIIIIIIII

Example

CSE 2011
YOR I<E ' - 208 - Last Updated: 12-03-22 10:12 AM
““““““““ Prof. J. Elder

UUUUUUUUUU

Example

CSE 2011
YO RK ' - 209 - Last Updated: 12-03-22 10:12 AM
“““““““““ Prof. J. Elder

UUUUUUUUUU

Example

CSE 2011
YO RK ' -210 - Last Updated: 12-03-22 10:12 AM
“““““““““ Prof. J. Elder

UUUUUUUUUU

Djikstra’s Algorithm Cannot Handle Negative Edges

2
—(————0
S X y y4
UYN,(\,)EIR:{S,IS ' CSE 2011 -211 - Last Updated: 12-03-22 10:12 AM

Prof. J. Elder

IIIIIIIIII

Correctness of Dijkstra’s algorithm

DIIKSTRA(G, w, §)
1 INITIALIZE-SINGLE-SOURCE(G, s)
2 S <0

3 0 <« VI[G]

4 while Q # 0

5 dou <« EXTRACT-MIN(Q)
6 S «— S U {u)
7
8

for each vertex v € Adj[u]
do RELAX (u, v, w)

>~ Loop invariant: d[v] = d(s, v) for all vin S.
O Initialization: Initially, S is empty, so trivially true.
O Termination: Atend, Q is empty 2S =V - d[v] = (s, v) forall vin V.

L Maintenance:

< Need to show that
% d[u] = &(s, u) when u is added to S in each iteration.

+“ d[u] does not change once u is added to S.

YORK CSE 2011
' -212 - Last Updated: 12-03-22 10:12 AM
pirt Prof. J. Elder

Correctness of Dijkstra’s Algorithm: Upper Bound Property

» Upper Bound Property:

1. d[v]=d(s,v)VveV
2. Once d|[v] = d6(s,v), it doesn't change

 Proof:

By induction.

Base Case: d[v] = d(s,v)Vv e V immediately after initialization, since
d[s] =0 =6(s,s)
d[v]=eVVv #s

Inductive Step:
Suppose d[x] = o(s,x)Vxe V
Suppose we relax edge (u,v).

If d[v] changes, then d[v] =d[u] +w(u,V)

/ A valid path from s to v!
> o(s,u)+w(u,v)

> 0(S,V)

CSE 2011
YO RK ' -213 - Last Updated: 12-03-22 10:12 AM
““““““““ : Prof. J. Elder

IIIIIIIIII

Correctness of Dijkstra’s Algorithm
Claim: When u is added to S, d[u] = d(s,u)

Proof by Contradiction: Let u be the first vertex added to S
such that d[u] # 6(s,u) when u is added.

Let y be first vertex in V —S on shortest path to u
Let x be the predecessor of y on the shortest path to u

Claim: d[y]= d(s,y) when u is added to S. Optimal substructure
Proof: property!
d[x]=d(s, x), since xe S.

(x,y) was relaxed when x was added to S — d[y]=d(s,x)+w(x,y)=0(s,y)

Handled

CSE 2011
YORK ' -214 - Last Updated: 12-03-22 10:12 AM

||||||||| E
vvvvvvvvvv

Prof. J. Elder

Correctness of Dijkstra’s Algorithm

Thus d[y] = d(s,y) when u is added to S.
DUKSTRA(G, w, §)

N d[y] = §(S,y) < 5(S,U) < d[u] (upper bound property) é lNITI.»'-V\jLIZE-SINGLE-S()URCE(G, s)
S <« ¢

But d[u] < d[y] when u added to S 3 Q0 <« VI[G]
MCQ)

Thus d[y]=d(s,y) = o(s,u)=d[u]! do g « EETFf}(I'I’-NllN(Q)
<. U

for each vertex v € Adj[u]
do RELAX(u, v, w)

o~ O U

Thus when u is added to S, d[u] = é(s,u)

Consequences:
There is a shortest path to u such that the predecessor of u z{u]e S when u is added to S.

The path through y can only be a shortest path if w[p,] =0.

Handled

CSE 2011
YO RK ' -215 - Last Updated: 12-03-22 10:12 AM
““““““““ : Prof. J. Elder

IIIIIIIIII

Correctness of Dijkstra’s algorithm

DIIKSTRA(G, w, §)

]l INITIALIZE-SINGLE-SOURCE(G, s)

2 S <0

3 0 <« V[G]

4 while Q # ¢

5 do u < EXTRACT-MIN(Q)

> R Relax(u,v,w) can only decrease d[v]

7 for each vertex v € Ad [u]

8 ¢ Tdo RELAX(u, v, w)_ = By the upper bound property, d[v] = &(s,v).

_ e as s e -

Thus once d[v] = d(s,Vv), it will not be changed.
» Loop invariant: d[v] = d(s, v) forall vin S.

1 Maintenance:
<> Need to show that

_————————__
Y oy

G — % d[u] does not change once u is added to S. _D ?

~
—
e T e

CSE 2011
YORK ' -216 - Last Updated: 12-03-22 10:12 AM
“““““““ Prof. J. Elder

UUUUUUUUUU

