
Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 1 -

Graphs

ORD

DFW

SFO

LAX

80
2

1843

1233

337

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 2 -

John

DavidPaul

brown.edu

cox.net

cs.brown.edu

att.net
qwest.net

math.brown.edu

cslab1bcslab1a

Applications
Ø  Electronic circuits

q  Printed circuit board

q  Integrated circuit

Ø  Transportation networks
q  Highway network

q  Flight network

Ø  Computer networks
q  Local area network

q  Internet

q Web

Ø  Databases
q  Entity-relationship diagram

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 3 -

Edge Types
Ø  Directed edge

q  ordered pair of vertices (u,v)

q  first vertex u is the origin

q  second vertex v is the destination

q  e.g., a flight

Ø  Undirected edge
q  unordered pair of vertices (u,v)

q  e.g., a flight route

Ø  Directed graph (Digraph)
q  all the edges are directed

q  e.g., route network

Ø  Undirected graph
q  all the edges are undirected

q  e.g., flight network

ORD PVD

flight
AA 1206

ORD PVD

849
miles

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 4 -

Vertices and Edges
Ø  End vertices (or endpoints) of

an edge
q  U and V are the endpoints of a

Ø  Edges incident on a vertex
q  a, d, and b are incident on V

Ø  Adjacent vertices
q  U and V are adjacent

Ø  Degree of a vertex
q  X has degree 5

Ø  Parallel edges
q  h and i are parallel edges

Ø  Self-loop
q  j is a self-loop

X U

V

W

Z

Y

a

c

b

e

d

f

g

h

i

j

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 5 -

Graphs
Ø  A graph is a pair (V, E), where

q  V is a set of nodes, called vertices

q  E is a collection of pairs of vertices, called edges

q  Vertices and edges are positions and store elements

Ø  Example:
q  A vertex represents an airport and stores the three-letter airport code

q  An edge represents a flight route between two airports and stores the
mileage of the route

ORD
PVD

MIA
DFW

SFO

LAX

LGA

HNL

849

80
2

1843

1120
1233

337 2555

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 6 -

P1

Paths

Ø  Path
q  sequence of alternating

vertices and edges

q  begins with a vertex

q  ends with a vertex

q  each edge is preceded and
followed by its endpoints

Ø  Simple path
q  path such that all its vertices

and edges are distinct

Ø  Examples
q  P1=(V,b,X,h,Z) is a simple path

q  P2=(U,c,W,e,X,g,Y,f,W,d,V) is a
path that is not simple

X U

V

W

Z

Y

a

c

b

e

d

f

g

h P2

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 7 -

Cycles

Ø  Cycle
q  circular sequence of alternating

vertices and edges

q  each edge is preceded and
followed by its endpoints

Ø  Simple cycle
q  cycle such that all its vertices

and edges are distinct

Ø  Examples
q  C1=(V,b,X,g,Y,f,W,c,U,a,↵) is a

simple cycle

q  C2=(U,c,W,e,X,g,Y,f,W,d,V,a,↵)
is a cycle that is not simple

C1

X U

V

W

Z

Y

a

c

b

e

d

f

g

h C2

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 8 -

Subgraphs

Ø A subgraph S of a graph
G is a graph such that
q The vertices of S are a

subset of the vertices of G

q The edges of S are a
subset of the edges of G

Ø A spanning subgraph of
G is a subgraph that
contains all the vertices of
G

Subgraph

Spanning subgraph

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 9 -

Connectivity
Ø A graph is connected if

there is a path between
every pair of vertices

Ø A connected component
of a graph G is a maximal
connected subgraph of G

Connected graph

Non connected graph with two
connected components

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 10 -

Trees

Tree Forest Graph with Cycle

A tree is a connected, acyclic, undirected graph.

A forest is a set of trees (not necessarily connected)

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 11 -

Spanning Trees

Ø  A spanning tree of a connected
graph is a spanning subgraph that
is a tree

Ø  A spanning tree is not unique
unless the graph is a tree

Ø  Spanning trees have applications
to the design of communication
networks

Ø  A spanning forest of a graph is a
spanning subgraph that is a forest

Graph

Spanning tree

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 12 -

Reachability in Directed Graphs
Ø A node w is reachable from v if there is a directed path

originating at v and terminating at w.
q  E is reachable from B

q B is not reachable from E

A

C

E

B

D

F

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 13 -

Properties

Notation
 |V| number of vertices

 |E| number of edges

deg(v) degree of vertex v

Property 1

Σv deg(v) = 2|E|

Proof: each edge is counted
twice

Property 2
In an undirected graph with no

self-loops and no multiple
edges

 |E| ≤ |V| (|V| - 1)/2

Proof: each vertex has degree
at most (|V| – 1)

Example
n  |V| = 4
n  |E| = 6
n  deg(v) = 3

A : E ≤ V (V −1)
Q: What is the bound for a digraph?

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 14 -

Main Methods of the (Undirected) Graph ADT
Ø Vertices and edges

q are positions
q store elements

Ø Accessor methods
q endVertices(e): an array of the

two endvertices of e
q opposite(v, e): the vertex

opposite to v on e
q areAdjacent(v, w): true iff v and

w are adjacent
q replace(v, x): replace element at

vertex v with x
q replace(e, x): replace element at

edge e with x

Ø Update methods
q  insertVertex(o): insert a vertex

storing element o
q  insertEdge(v, w, o): insert an

edge (v,w) storing element o
q removeVertex(v): remove vertex

v (and its incident edges)
q removeEdge(e): remove edge e

Ø  Iterator methods
q  incidentEdges(v): edges

incident to v
q vertices(): all vertices in the

graph
q edges(): all edges in the graph

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 15 -

Directed Graph ADT

Ø Additional methods:
q  isDirected(e): return true if e is a directed edge
q  insertDirectedEdge(v, w, o): insert and return a new directed

edge with origin v and destination w, storing element o

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 16 -

Running Time of Graph Algorithms

Ø Running time often a function of both |V| and |E|.

Ø  For convenience, we sometimes drop the | . | in
asymptotic notation, e.g. O(V+E).

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 17 -

Implementing a Graph (Simplified)

Adjacency List Adjacency Matrix

Space complexity:

Time to find all neighbours of vertex :u

Time to determine if (,) : ∈u v E

()θ +V E

(degree())θ u

(degree())θ u

2()θ V
()θ V

(1)θ

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 18 -

Representing Graphs (Details)

Ø  Three basic methods
q Edge List

q Adjacency List

q Adjacency Matrix

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 19 -

Edge List Structure
Ø  Vertex object

q  element

q  reference to position in vertex
sequence

Ø  Edge object
q  element

q  origin vertex object

q  destination vertex object

q  reference to position in edge
sequence

Ø  Vertex sequence
q  sequence of vertex objects

Ø  Edge sequence
q  sequence of edge objects

v

u

w

a c
b

a

z
d

u v w z

b c d

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 20 -

Adjacency List Structure

Ø  Edge list structure
Ø  Incidence sequence for

each vertex
q  sequence of references to

edge objects of incident
edges

Ø  Augmented edge objects
q  references to associated

positions in incidence
sequences of end vertices

u
v

w
a b

a

u v w

b

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 21 -

Adjacency Matrix Structure
Ø  Edge list structure
Ø  Augmented vertex

objects
q  Integer key (index)

associated with vertex

Ø  2D-array adjacency
array
q  Reference to edge

object for adjacent
vertices

q  Null for non-
nonadjacent vertices

u
v

w
a b

0 1 2

0 Ø Ø

1 Ø

2 Ø Ø a

u v w 0 1 2

b

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 22 -

Asymptotic Performance
(assuming collections V and E represented as

doubly-linked lists)
" |V| vertices, |E| edges
" no parallel edges
" no self-loops
" Bounds are “big-Oh”

Edge
List

Adjacency
List

Adjacency
Matrix

Space |V|+|E| |V|+|E| |V|2

incidentEdges(v) |E| deg(v) |V|
areAdjacent (v, w) |E| min(deg(v), deg(w)) 1
insertVertex(o) 1 1 |V|2

insertEdge(v, w, o) 1 1 1
removeVertex(v) |E| deg(v) |V|2
removeEdge(e) 1 1 1

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 23 -

Graph Search Algorithms

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 24 -

Depth First Search (DFS)
Ø  Idea:

q Continue searching “deeper” into the graph, until we get
stuck.

q  If all the edges leaving v have been explored we “backtrack”
to the vertex from which v was discovered.

q Analogous to Euler tour for trees

Ø Used to help solve many graph problems, including
q Nodes that are reachable from a specific node v
q Detection of cycles

q Extraction of strongly connected components

q Topological sorts

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 25 -

Depth-First Search
Ø  The DFS algorithm is

similar to a classic
strategy for exploring a
maze
q We mark each

intersection, corner and
dead end (vertex) visited

q We mark each corridor
(edge) traversed

q We keep track of the path
back to the entrance
(start vertex) by means of
a rope (recursion stack)

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 26 -

Depth-First Search

Ø  Explore every edge, starting from different vertices if necessary.

Ø  As soon as vertex discovered, explore from it.

Ø  Keep track of progress by colouring vertices:
q  Black: undiscovered vertices

q  Red: discovered, but not finished (still exploring from it)

q Gray: finished (found everything reachable from it).

Graph (,) (directed or In undirectep :)t du G V E=

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 27 -

DFS Example on Undirected Graph

D B

A

C

E

D B

A

C

E

D B

A

C

E

discovery edge

back edge

A finished

A unexplored

unexplored edge

A being explored

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 28 -

Example (cont.)

D B

A

C

E

D B

A

C

E

D B

A

C

E

D B

A

C

E

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 29 -

DFS Algorithm Pattern

DFS(G)
Precondition: G is a graph
Postcondition: all vertices in G have been visited

for each vertex u∈V [G]
color[u] = BLACK //initialize vertex

for each vertex u∈V [G]
if color[u] = BLACK //as yet unexplored

DFS-Visit(u)

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 30 -

DFS Algorithm Pattern

DFS-Visit (u)
Precondition: vertex u is undiscovered
Postcondition: all vertices reachable from u have been processed

colour[u] ← RED
for each v ∈Adj[u] //explore edge (u,v)

if color[v] = BLACK
DFS-Visit(v)

colour [u]←GRAY

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 31 -

Properties of DFS

Property 1
 DFS-Visit(u) visits all the
vertices and edges in the
connected component of u

Property 2
 The discovery edges
labeled by DFS-Visit(u)
form a spanning tree of the
connected component of u

D B

A

C

E

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 32 -

DFS Algorithm Pattern

DFS(G)
Precondition: G is a graph
Postcondition: all vertices in G have been visited

for each vertex u∈V [G]
color[u] = BLACK //initialize vertex

for each vertex u∈V [G]
if color[u] = BLACK //as yet unexplored

DFS-Visit(u)

total work
= θ(V)

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 33 -

DFS Algorithm Pattern

DFS-Visit (u)
Precondition: vertex u is undiscovered
Postcondition: all vertices reachable from u have been processed

colour[u] ← RED
for each v ∈Adj[u] //explore edge (u,v)

if color[v] = BLACK
DFS-Visit(v)

colour [u]←GRAY

total work
= |Adj[v]|

v∈V
∑ = θ(E)

Thus running time = θ(V + E)
(assuming adjacency list structure)

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 34 -

Variants of Depth-First Search
Ø  In addition to, or instead of labeling vertices with colours, they can be

labeled with discovery and finishing times.

Ø  ‘Time’ is an integer that is incremented whenever a vertex changes state
q  from unexplored to discovered

q  from discovered to finished

Ø  These discovery and finishing times can then be used to solve other
graph problems (e.g., computing strongly-connected components)

Graph (,) (directed or In undirectep :)t du G V E=

2 timestamps on each vertex:
 [] discovery time.
 [] finishing tim

Output

.

:

e
d v
f v

=
=

1 [] [] 2| |d v f v V≤ < ≤

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 35 -

DFS Algorithm with Discovery and Finish Times

DFS(G)
Precondition: G is a graph
Postcondition: all vertices in G have been visited

for each vertex u∈V [G]
color[u] = BLACK //initialize vertex

time ← 0
for each vertex u∈V [G]

if color[u] = BLACK //as yet unexplored
DFS-Visit(u)

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 36 -

DFS-Visit (u)
Precondition: vertex u is undiscovered
Postcondition: all vertices reachable from u have been processed

colour[u] ← RED
time ← time +1
d[u]← time
for each v ∈Adj[u] //explore edge (u,v)

if color[v] = BLACK
DFS-Visit(v)

colour [u]←GRAY
time ← time +1
f [u]← time

DFS Algorithm with Discovery and Finish Times

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 37 -

Other Variants of Depth-First Search

Ø  The DFS Pattern can also be used to
q Compute a forest of spanning trees (one for each call to DFS-

visit) encoded in a predecessor list π[u]

q Label edges in the graph according to their role in the search
(see textbook)
² Tree edges, traversed to an undiscovered vertex

² Forward edges, traversed to a descendent vertex on the current
spanning tree

² Back edges, traversed to an ancestor vertex on the current
spanning tree

² Cross edges, traversed to a vertex that has already been
discovered, but is not an ancestor or a descendent

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 38 -

End of Lecture

Tuesday, Mar 20, 2012

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 39 -

Example DFS on Directed Graph

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 40 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Stack
<node,# edges>

/

/

/ /

/

/

/

/

/

/

/

/

/

/

d f

Note: Stack is Last-In First-Out (LIFO)

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 41 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Stack
<node,# edges>

s,0

/

1/

/ /

/

/

/

/

/

/

/

/

/

/

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 42 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Found
Not Handled

Stack
<node,# edges>

a,0
/

1/

/ 2/

/

/

/

/

/

/

/

/

/

/

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 43 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Found
Not Handled

Stack
<node,# edges>

a,1
c,0 /

1/

/ 2/

3/

/

/

/

/

/

/

/

/

/

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 44 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Found
Not Handled

Stack
<node,# edges>

a,1
c,1
h,0

/

1/

/ 2/

3/

/

/

/

/

/

/

/

4/

/

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 45 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Found
Not Handled

Stack
<node,# edges>

a,1
c,1
h,1
k,0

/

1/

/ 2/

3/

/

/

/

/

/

/

5/

4/

/

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 46 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Found
Not Handled

Stack
<node,# edges>

a,1
c,1
h,1

Tree Edge

Path on Stack /

1/

/ 2/

3/

/

/

/

/

/

/

5/6

4/

/

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 47 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Found
Not Handled

Stack
<node,# edges>

a,1
c,1 /

1/

/ 2/

3/

/

/

/

/

/

/

5/6

4/7

/

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 48 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Found
Not Handled

Stack
<node,# edges>

a,1
c,2
i,0

8/

1/

/ 2/

3/

/

/

/

/

/

/

5/6

4/7

/

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 49 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Found
Not Handled

Stack
<node,# edges>

a,1
c,2
i,1

Cross Edge to handled node: d[h]<d[i]

8/

1/

/ 2/

3/

/

/

/

/

/

/

5/6

4/7

/

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 50 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Found
Not Handled

Stack
<node,# edges>

a,1
c,2
i,2

8/

1/

/ 2/

3/

/

/

/

/

/

/

5/6

4/7

/

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 51 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Found
Not Handled

Stack
<node,# edges>

a,1
c,2
i,3
l,0

8/

1/

/ 2/

3/

/

/

/

/

/

9/

5/6

4/7

/

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 52 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Found
Not Handled

Stack
<node,# edges>

a,1
c,2
i,3
l,1

8/

1/

/ 2/

3/

/

/

/

/

/

9/

5/6

4/7

/

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 53 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Found
Not Handled

Stack
<node,# edges>

a,1
c,2
i,3

8/

1/

/ 2/

3/

/

/

/

/

/

9/10

5/6

4/7

/

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 54 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Found
Not Handled

Stack
<node,# edges>

a,1
c,2
i,4
g,0

8/

1/

/ 2/

3/

/

/

11/

/

/

9/10

5/6

4/7

/

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 55 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Found
Not Handled

Stack
<node,# edges>

a,1
c,2
i,4
g,1
j,0

8/

1/

/ 2/

3/

/

/

11/

12/

/

9/10

5/6

4/7

/

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 56 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Found
Not Handled

Stack
<node,# edges>

a,1
c,2
i,4
g,1
j,1

Back Edge to node on Stack:

8/

1/

/ 2/

3/

/

/

11/

12/

/

9/10

5/6

4/7

/

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 57 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Found
Not Handled

Stack
<node,# edges>

a,1
c,2
i,4
g,1
j,2
m,0

8/

1/

/ 2/

3/

/

/

11/

12/

13/

9/10

5/6

4/7

/

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 58 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Found
Not Handled

Stack
<node,# edges>

a,1
c,2
i,4
g,1
j,2
m,1

8/

1/

/ 2/

3/

/

/

11/

12/

13/

9/10

5/6

4/7

/

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 59 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Found
Not Handled

Stack
<node,# edges>

a,1
c,2
i,4
g,1
j,2

8/

1/

/ 2/

3/

/

/

11/

12/

13/14

9/10

5/6

4/7

/

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 60 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Found
Not Handled

Stack
<node,# edges>

a,1
c,2
i,4
g,1

8/

1/

/ 2/

3/

/

/

11/

12/15

13/14

9/10

5/6

4/7

/

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 61 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Found
Not Handled

Stack
<node,# edges>

a,1
c,2
i,4

8/

1/

/ 2/

3/

/

/

11/16

12/15

13/14

9/10

5/6

4/7

/

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 62 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Found
Not Handled

Stack
<node,# edges>

a,1
c,2
i,5
f,0

8/

1/

/ 2/

3/

17/

/

11/16

12/15

13/14

9/10

5/6

4/7

/

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 63 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Found
Not Handled

Stack
<node,# edges>

a,1
c,2
i,5
f,1

8/

1/

/ 2/

3/

17/

/

11/16

12/15

13/14

9/10

5/6

4/7

/

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 64 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Found
Not Handled

Stack
<node,# edges>

a,1
c,2
i,5

8/

1/

/ 2/

3/

17/18

/

11/16

12/15

13/14

9/10

5/6

4/7

/

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 65 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Found
Not Handled

Stack
<node,# edges>

a,1
c,2 8/19

1/

/ 2/

3/

17/18

/

11/16

12/15

13/14

9/10

5/6

4/7

/

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 66 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Found
Not Handled

Stack
<node,# edges>

a,1
c,3 8/19

1/

/ 2/

3/

17/18

/

11/16

12/15

13/14

9/10

5/6

4/7

/

Forward Edge

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 67 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Found
Not Handled

Stack
<node,# edges>

a,1
8/19

1/

/ 2/

3/19

17/18

/

11/16

12/15

13/14

9/10

5/6

4/7

/

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 68 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Found
Not Handled

Stack
<node,# edges>

a,2
8/19

1/

/ 2/

3/19

17/18

/

11/16

12/15

13/14

9/10

5/6

4/7

/

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 69 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Found
Not Handled

Stack
<node,# edges>

8/19

1/

/ 2/20

3/19

17/18

/

11/16

12/15

13/14

9/10

5/6

4/7

/

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 70 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,2

Found
Not Handled

Stack
<node,# edges>

d,0
8/19

1/

/ 2/20

3/19

17/18

21/

11/16

12/15

13/14

9/10

5/6

4/7

/

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 71 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,2

Found
Not Handled

Stack
<node,# edges>

d,1
8/19

1/

/ 2/20

3/19

17/18

21/

11/16

12/15

13/14

9/10

5/6

4/7

/

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 72 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,2

Found
Not Handled

Stack
<node,# edges>

d,2
8/19

1/

/ 2/20

3/19

17/18

21/

11/16

12/15

13/14

9/10

5/6

4/7

/

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 73 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,2

Found
Not Handled

Stack
<node,# edges>

d,3
e,0 8/19

1/

/ 2/20

3/19

17/18

21/

11/16

12/15

13/14

9/10

5/6

4/7

22/

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 74 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,2

Found
Not Handled

Stack
<node,# edges>

d,3
e,1 8/19

1/

/ 2/20

3/19

17/18

21/

11/16

12/15

13/14

9/10

5/6

4/7

22/

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 75 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,2

Found
Not Handled

Stack
<node,# edges>

d,3
8/19

1/

/ 2/20

3/19

17/18

21/

11/16

12/15

13/14

9/10

5/6

4/7

22/23

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 76 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,2

Found
Not Handled

Stack
<node,# edges>

8/19

1/

/ 2/20

3/19

17/18

21/24

11/16

12/15

13/14

9/10

5/6

4/7

22/23

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 77 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,3

Found
Not Handled

Stack
<node,# edges>

8/19

1/

/ 2/20

3/19

17/18

21/24

11/16

12/15

13/14

9/10

5/6

4/7

22/23

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 78 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,4

Found
Not Handled

Stack
<node,# edges>

b,0
8/19

1/

25/ 2/20

3/19

17/18

21/24

11/16

12/15

13/14

9/10

5/6

4/7

22/23

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 79 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,4

Found
Not Handled

Stack
<node,# edges>

b,1
8/19

1/

25/ 2/20

3/19

17/18

21/24

11/16

12/15

13/14

9/10

5/6

4/7

22/23

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 80 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,4

Found
Not Handled

Stack
<node,# edges>

b,2
8/19

1/

25/ 2/20

3/19

17/18

21/24

11/16

12/15

13/14

9/10

5/6

4/7

22/23

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 81 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,4

Found
Not Handled

Stack
<node,# edges>

b,3
8/19

1/

25/ 2/20

3/19

17/18

21/24

11/16

12/15

13/14

9/10

5/6

4/7

22/23

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 82 -

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,4

Found
Not Handled

Stack
<node,# edges>

8/19

1/

25/26 2/20

3/19

17/18

21/24

11/16

12/15

13/14

9/10

5/6

4/7

22/23

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 83 -

DFS

s

Found
Not Handled

Stack
<node,# edges>

Finished!

Tree Edges
Back Edges

a

c

h

k

f

i

l

m

j

e

b

g
d

Cross Edges

8/19

1/27

25/26 2/20

3/19

17/18

21/24

11/16

12/15

13/14

9/10

5/6

4/7

22/23

Forward Edges

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 84 -

Classification of Edges in DFS
1.  Tree edges are edges in the depth-first forest Gπ. Edge (u, v) is a tree edge if

v was first discovered by exploring edge (u, v).

2.  Back edges are those edges (u, v) connecting a vertex u to an ancestor v in a
depth-first tree.

3.  Forward edges are non-tree edges (u, v) connecting a vertex u to a
descendant v in a depth-first tree.

4.  Cross edges are all other edges. They can go between vertices in the same
depth-first tree, as long as one vertex is not an ancestor of the other.

s

a

c

h

k

f

i

l

m

j

e

b

g

d

8/19

1/27

25/26 2/20

3/19

17/18

21/24

11/16

12/15

13/14

9/10

5/6

4/7

22/23

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 85 -

Classification of Edges in DFS
1.  Tree edges: Edge (u, v) is a tree edge if v was black when (u, v) traversed.

2.  Back edges: (u, v) is a back edge if v was red when (u, v) traversed.

3.  Forward edges: (u, v) is a forward edge if v was gray when (u, v) traversed
and d[v] > d[u].

4.  Cross edges (u,v) is a cross edge if v was gray when (u, v) traversed and
d[v] < d[u].

s

a

c

h

k

f

i

l

m

j

e

b

g
d

8/
19

1/
27 25

/2
6

2/
20

3/
19 17

/1
8

21
/2
4

11
/1
6 12

/1
5

13
/1
4 9/

10

5/
6

4/
7

22
/2
3

Classifying edges can help to identify
properties of the graph, e.g., a graph is
acyclic iff DFS yields no back edges.

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 86 -

DFS on Undirected Graphs

Ø  In a depth-first search of an undirected graph, every
edge is either a tree edge or a back edge.

Ø Why?

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 87 -

DFS on Undirected Graphs
Ø  Suppose that (u,v) is a forward edge or a

cross edge in a DFS of an undirected graph.

Ø  (u,v) is a forward edge or a cross edge when v
is already handled (grey) when accessed from
u.

Ø  This means that all vertices reachable from v
have been explored.

Ø  Since we are currently handling u, u must be red.

Ø  Clearly v is reachable from u.

Ø  Since the graph is undirected, u must also be
reachable from v.

Ø  Thus u must already have been handled: u must
be grey.

Ø  Contradiction!

u

v

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 88 -

Applications of Depth-First Search

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 89 -

DFS Application 1: Path Finding

DFS-Path (u,z)
Precondition: u and z are vertices in a graph
Postcondition: a path from u to z is returned, if one exists

colour[u] ← RED
push u onto stack
if u = z

return list of elements on stack
for each v ∈Adj[u] //explore edge (u,v)

if color[v] = BLACK
DFS-Path(v,z)

colour [u]←GRAY
pop u from stack

Ø  The DFS pattern can be used to find a path between two given vertices u and z,
if one exists

Ø  We use a stack to keep track of the current path

Ø  If the destination vertex z is encountered, we return the path as the contents of
the stack

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 90 -

DFS Application 2: Cycle Finding

DFS-Cycle (u)
Precondition: u is a vertex in a graph G
Postcondition: a cycle reachable from u is returned, of one exists

colour[u] ← RED
push u onto stack
for each v ∈Adj[u] //explore edge (u,v)

if color[v] = RED //back edge
return top of stack down to v

else if color[v] = BLACK
DFS-Cycle(v)

colour [u]←GRAY
pop u from stack

Ø  The DFS pattern can be used to find a cycle in a graph, if one exists
Ø  We use a stack to keep track of the current path

Ø  If a back edge is encountered, we return the cycle as the contents of the stack

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 91 -

Why must DFS on a graph with a cycle
generate a back edge?

Ø  Suppose that vertex s is in a connected
component S that contains a cycle C.

Ø  Since all vertices in S are reachable from
s, they will all be visited by a DFS from s.

Ø  Let v be the first vertex in C reached by a
DFS from s.

Ø  There are two vertices u and w adjacent
to v on the cycle C.

Ø  wlog, suppose u is explored first.

Ø  Since w is reachable from u, w will
eventually be discovered.

Ø  When exploring w’s adjacency list, the
back-edge (w, s) will be discovered.

s

v

u w

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 92 -

DFS Application 3. Topological Sorting
(e.g., putting tasks in linear order)

Note: The textbook also describes a breadth-
first TopologicalSort algorithm (Section 13.4.3)

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 93 -

DAGs and Topological Ordering
Ø  A directed acyclic graph (DAG) is a

digraph that has no directed cycles

Ø  A topological ordering of a digraph
is a numbering

 v1 , …, vn

 of the vertices such that for every
edge (vi , vj), we have i < j

Ø  Example: in a task scheduling
digraph, a topological ordering is a
task sequence that satisfies the
precedence constraints

Theorem

 A digraph admits a topological
ordering if and only if it is a DAG

B

A

D

C

E

DAG G

B

A

D

C

E

Topological
ordering of G

v1

v2

v3

v4 v5

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 94 -

Topological (Linear) Order

underwear

pants

socks

shoes

underwear
pants
socks
shoes

socks
underwear
pants
shoes

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 95 -

Topological (Linear) Order

underwear

pants

socks

shoes

socks
shoes
pants
underwear

Invalid
Order

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 96 -

Ø Note: This algorithm is different than the one
in Goodrich-Tamassia

Algorithm for Topological Sorting

Method TopologicalSort(G)
 H G // Temporary copy of G
 n G.numVertices()
 while H is not empty do

 Let v be a vertex with no outgoing edges
 Label v n
 n n - 1
 Remove v from H //as well as edges involving v

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 97 -

Linear Order

a

b h
c i
d j
e k

f l

g

Pre-Condition:
 A Directed Acyclic Graph
 (DAG)

Post-Condition:
 Find one valid linear order

Algorithm:
• Find a terminal node (sink).
• Put it last in sequence.
• Delete from graph & repeat

….. l Can we do better?

Running time: i

i=1

V

∑ = O V
2()

O(|V|)

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 98 -

Linear Order

a

b h
c i
d j
e k

f

g

Found
Not Handled

Stack

Alg: DFS

d
e
g
f

l

….. f

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 99 -

Linear Order

a

b h
c i
d j
e k

f

g

Found
Not Handled

Stack

Alg: DFS

d
e
g
l

l
When node is popped off stack, insert at front of linearly-ordered “to do” list.

….. f
Linear Order:

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 100 -

Linear Order

a

b h
c i
d j
e k

f

g

Found
Not Handled

Stack

Alg: DFS

d
e
g

l

l,f
Linear Order:

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 101 -

Linear Order

a

b h
c i
d j
e k

f

g

Found
Not Handled

Stack

Alg: DFS

d
e l

g,l,f
Linear Order:

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 102 -

Linear Order

a

b h
c i
d j
e k

f

g

Found
Not Handled

Stack

Alg: DFS

d l

e,g,l,f
Linear Order:

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 103 -

Linear Order

a

b h
c i
d j
e k

f

g

Found
Not Handled

Stack

Alg: DFS

l

d,e,g,l,f
Linear Order:

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 104 -

Linear Order

a

b h
c i
d j
e k

f

g

Found
Not Handled

Stack

Alg: DFS

i l

d,e,g,l,f

j
k

Linear Order:

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 105 -

Linear Order

a

b h
c i
d j
e k

f

g

Found
Not Handled

Stack

Alg: DFS

i l

k,d,e,g,l,f

j

Linear Order:

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 106 -

Linear Order

a

b h
c i
d j
e k

f

g

Found
Not Handled

Stack

Alg: DFS

i l

j,k,d,e,g,l,f Linear Order:

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 107 -

Linear Order

a

b h
c i
d j
e k

f

g

Found
Not Handled

Stack

Alg: DFS

l

i,j,k,d,e,g,l,f Linear Order:

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 108 -

Linear Order

a

b h
c i
d j
e k

f

g

Found
Not Handled

Stack

Alg: DFS

b l
c

i,j,k,d,e,g,l,f Linear Order:

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 109 -

Linear Order

a

b h
c i
d j
e k

f

g

Found
Not Handled

Stack

Alg: DFS

b l

c,i,j,k,d,e,g,l,f Linear Order:

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 110 -

Linear Order

a

b h
c i
d j
e k

f

g

Found
Not Handled

Stack

Alg: DFS

l

b,c,i,j,k,d,e,g,l,f Linear Order:

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 111 -

Linear Order

a

b h
c i
d j
e k

f

g

Found
Not Handled

Stack

Alg: DFS

a l
h

b,c,i,j,k,d,e,g,l,f Linear Order:

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 112 -

Linear Order

a

b h
c i
d j
e k

f

g

Found
Not Handled

Stack

Alg: DFS

a l

h,b,c,i,j,k,d,e,g,l,f Linear Order:

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 113 -

Linear Order

a

b h
c i
d j
e k

f

g

Found
Not Handled

Stack

Alg: DFS

l

a,h,b,c,i,j,k,d,e,g,l,f Done! Linear Order:

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 114 -

DFS Algorithm for Topologial Sort

Ø Makes sense. But how do we prove that it works?

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 115 -

Linear Order Found
Not Handled

Stack
Proof:
• Case 1: u goes on stack first before v.

• Because of edge,
 v goes on before u comes off
• v comes off before u comes off
• v goes after u in order. J

u v
v… u…

Consider each edge

v

…

u

…

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 116 -

Linear Order Found
Not Handled

Stack
Proof:
• Case 1: u goes on stack first before v.
• Case 2: v goes on stack first before u.
 v comes off before u goes on.

• v goes after u in order. J

u v
v… u…

Consider each edge

u

…
 v

…

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 117 -

Linear Order Found
Not Handled

Stack
Proof:
• Case 1: u goes on stack first before v.
• Case 2: v goes on stack first before u.
 v comes off before u goes on.
Case 3: v goes on stack first before u.
 u goes on before v comes off.

• Panic: u goes after v in order. L
• Cycle means linear order
 is impossible J

u v
u… v…

Consider each edge

u

…

v

…

The nodes in the stack form a path starting at s.

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 118 -

Linear Order

a

b h
c i
d j
e k

f

g

Found
Not Handled

Stack

Alg: DFS

l

a,h,b,c,i,j,k,d,e,g,l,f Done! Linear Order:

ΘAnalysis: (V+E)

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 119 -

End of Lecture

March 22, 2012

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 120 -

DFS Application 3. Topological Sort

Topological-Sort(G)
Precondition: G is a graph
Postcondition: all vertices in G have been pushed onto
stack in reverse linear order

for each vertex u∈V [G]
color[u] = BLACK //initialize vertex

for each vertex u∈V [G]
if color[u] = BLACK //as yet unexplored

Topological-Sort-Visit(u)

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 121 -

DFS Application 3. Topological Sort

Topological-Sort-Visit (u)
Precondition: vertex u is undiscovered
Postcondition: u and all vertices reachable from u
have been pushed onto stack in reverse linear order

colour[u] ← RED
for each v ∈Adj[u] //explore edge (u,v)

if color[v] = BLACK
Topological-Sort-Visit(v)

push u onto stack
colour [u]←GRAY

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 122 -

Breadth-First Search

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 123 -

Breadth-First Search
Ø  Breadth-first search (BFS) is a general technique for traversing a graph
Ø  A BFS traversal of a graph G

q  Visits all the vertices and edges of G

q  Determines whether G is connected

q  Computes the connected components of G

q  Computes a spanning forest of G

Ø  BFS on a graph with |V| vertices and |E| edges takes O(|V|+|E|) time

Ø  BFS can be further extended to solve other graph problems
q  Cycle detection

q  Find and report a path with the minimum number of edges between two
given vertices

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 124 -

BFS Algorithm Pattern

BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: all vertices in G reachable from s have been visited

for each vertex u∈V [G]
color[u] ← BLACK //initialize vertex

colour[s] ← RED
Q.enqueue(s)
while Q ≠ ∅

u← Q.dequeue()
for each v ∈Adj[u] //explore edge (u,v)

if color[v] = BLACK
colour[v]←RED
Q.enqueue(v)

colour [u]←GRAY

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 125 -

BFS is a Level-Order Traversal

Ø Notice that in BFS exploration takes place on a
wavefront consisting of nodes that are all the same
distance from the source s.

Ø We can label these successive wavefronts by their
distance: L0, L1, …

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 126 -

BFS Example

C B

A

E

D

discovery edge

cross edge

A discovered (on Queue)

A undiscovered

unexplored edge

L0

L1

F

C B

A

E

D
L1

F

C B

A

E

D

L0

L1

F

A finished

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 127 -

BFS Example (cont.)

C B

A

E

D

L0

L1

F

C B

A

E

D

L0

L1

F
L2

C B

A

E

D

L0

L1

F
L2

C B

A

E

D

L0

L1

F
L2

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 128 -

BFS Example (cont.)

C B

A

E

D

L0

L1

F
L2

C B

A

E

D

L0

L1

F
L2

C B

A

E

D

L0

L1

F
L2

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 129 -

Properties
Notation

Gs: connected component of s
Property 1

 BFS(G, s) visits all the vertices and
edges of Gs

Property 2
 The discovery edges labeled by
BFS(G, s) form a spanning tree Ts of
Gs

Property 3
 For each vertex v in Li
q  The path of Ts from s to v has i

edges
q  Every path from s to v in Gs has at

least i edges

C B

A

E

D

L0

L1

F
L2

C B

A

E

D

F

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 130 -

Analysis

Ø Setting/getting a vertex/edge label takes O(1) time

Ø Each vertex is labeled three times
q once as BLACK (undiscovered)

q once as RED (discovered, on queue)

q once as GRAY (finished)

Ø Each edge is considered twice (for an undirected graph)

Ø Each vertex is placed on the queue once

Ø  Thus BFS runs in O(|V|+|E|) time provided the graph is
represented by an adjacency list structure

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 131 -

Applications

Ø BFS traversal can be specialized to solve the
following problems in O(|V|+|E|) time:
q Compute the connected components of G

q Compute a spanning forest of G

q Find a simple cycle in G, or report that G is a forest

q Given two vertices of G, find a path in G between
them with the minimum number of edges, or report
that no such path exists

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 132 -

Application: Shortest Paths on an Unweighted Graph

Ø Goal: To recover the shortest paths from a source node
s to all other reachable nodes v in a graph.
q The length of each path and the paths themselves are returned.

Ø Notes:
q There are an exponential number of possible paths

q Analogous to level order traversal for graphs

q This problem is harder for general graphs than trees because of
cycles!

s

?

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 133 -

Breadth-First Search

Ø  Idea: send out search ‘wave’ from s.

Ø  Keep track of progress by colouring vertices:
q  Undiscovered vertices are coloured black

q  Just discovered vertices (on the wavefront) are coloured red.

q  Previously discovered vertices (behind wavefront) are coloured grey.

Graph (,) (directed or undirected) and sourceInput: vertex .G V E s V= ∈

[] shortest path distance (,) from to , .
 [] such that (,) is las

Outpu

t edg

t:

e on shortest path from a to

 .
d v s v s v v V

v u u v s v
δ

π
= ∀ ∈
=

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 134 -

BFS Algorithm with Distances and Predecessors

BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: d[u] = shortest distance δ [u] and
π [u] = predecessor of u on shortest path from s to each vertex u in G

for each vertex u∈V [G]
d[u]←∞
π [u]← null
color[u] = BLACK //initialize vertex

colour[s] ← RED
d[s]← 0
Q.enqueue(s)
while Q ≠ ∅

u← Q.dequeue()
for each v ∈Adj[u] //explore edge (u,v)

if color[v] = BLACK
colour[v]←RED
d[v]← d[u]+1
π [v]← u
Q.enqueue(v)

colour [u]←GRAY

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 135 -

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue

First-In First-Out (FIFO) queue
stores ‘just discovered’ vertices

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 136 -

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue

s

d=0

d=0

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 137 -

BFS Found
Not Handled

Queue

d=0
a

b
g
d

d=1

s

a

c

h

k

f

i

l

m

j

e

b

g
d

d=0
d=1

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 138 -

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue

a

b
g
d

d=0
d=1

d=1

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 139 -

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue

b
g
d

c
f

d=0
d=1

d=2

d=1

d=2

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 140 -

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue

b
g

c
f
m
e

d=0
d=1

d=2

d=1

d=2

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 141 -

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue
d=0

d=1

d=2

b

j

c
f
m
e

d=1

d=2

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 142 -

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue
d=0

d=1

d=2

j

c
f
m
e

d=1

d=2

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 143 -

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue

c
f
m
e
j

d=0
d=1

d=2

d=2

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 144 -

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue

f
m
e
j
h
i

d=0
d=1

d=2

d=3

d=2

d=3

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 145 -

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue

m
e
j
h
i

d=0
d=1

d=2

d=3

d=2

d=3

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 146 -

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue

e
j
h
i
l

d=0
d=1

d=2

d=3

d=2

d=3

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 147 -

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue

j
h
i
l

d=0
d=1

d=2

d=3

d=2

d=3

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 148 -

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue

h
i
l

d=0
d=1

d=2

d=3

d=2

d=3

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 149 -

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue

h

d=0
d=1

d=2

d=3

i
l

d=3

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 150 -

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue

i
l
k

d=0
d=1

d=2

d=3 d=4

d=3

d=4

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 151 -

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue

l
k

d=0
d=1

d=2

d=3 d=4

d=3

d=4

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 152 -

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue

k

d=0
d=1

d=2

d=3 d=4

d=3

d=4

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 153 -

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue

k

d=0
d=1

d=2

d=3 d=4

d=4

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 154 -

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue
d=0

d=1

d=2

d=3 d=4

d=4
d=5

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 155 -

Breadth-First Search Algorithm: Properties

Ø  Q is a FIFO queue.

Ø  Each vertex assigned finite d
value at most once.

Ø  Q contains vertices with d
values {i, …, i, i+1, …, i+1}

Ø  d values assigned are
monotonically increasing over
time.

BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: d[u] = shortest distance δ [u] and
π [u] = predecessor of u on shortest paths from s to each vertex u in G

for each vertex u∈V [G]
d[u]←∞
π [u]← null
color[u] = BLACK //initialize vertex

colour[s] ← RED
d[s]← 0
Q.enqueue(s)
while Q ≠ ∅

u← Q.dequeue()
for each v ∈Adj[u] //explore edge (u,v)

if color[v] = BLACK
colour[v]←RED
d[v]← d[u]+1
π [v]← u
Q.enqueue(v)

colour [u]←GRAY

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 156 -

Breadth-First-Search is Greedy

Ø Vertices are handled:
q  in order of their discovery (FIFO queue)

q Smallest d values first

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 157 -

Basic Steps:

s
u

The shortest path to u
has length d

v

& there is an edge
from u to v

There is a path to v with length d+1.

Correctness

d

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 158 -

Correctness: Basic Intuition

Ø When we discover v, how do we know there is not a
shorter path to v?
q Because if there was, we would already have discovered it!

s
u v d

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 159 -

Correctness: More Complete Explanation

Ø Vertices are discovered in order of their distance from
the source vertex s.

Ø Suppose that at time t1 we have discovered the set Vd of
all vertices that are a distance of d from s.

Ø Each vertex in the set Vd+1 of all vertices a distance of
d+1 from s must be adjacent to a vertex in Vd

Ø  Thus we can correctly label these vertices by visiting all
vertices in the adjacency lists of vertices in Vd.

s
u v d

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 160 -

Inductive Proof of BFS

Suppose at step i that the set of nodes Si with distance δ(v) ≤ di have been

discovered and their distance values d[v] have been correctly assigned.

 Any node v with δ(v) = di +1 must be adjacent to Si .

 Any node v adjacent to Si but not in Si must have δ(v) = di +1.

 At step i +1, all nodes on the queue with d values of di are dequeued and processed.

Thus after step i +1, all nodes v with distance δ(v) ≤ di +1 have been discovered

and their distance values d[v] have been correctly assigned.

 Further suppose that the queue contains only nodes in Si with d values of di .

 In so doing, all nodes adjacent to Si are discovered and assigned d values of di +1.

 Furthermore, the queue contains only nodes in Si with d values of di +1.

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 161 -

Correctness: Formal Proof

Graph (,) (directed or undirected) and sourceInput: vertex .G V E s V= ∈

Output:
 d[v] = distance δ(v) from s to v, ∀v ∈V .
 π[v] = u such that (u,v) is last edge on shortest path from s to v .

1. [] (,)d v s v v Vδ≥ ∀ ∈

2. [] (,) d v s v v Vδ> ∀ ∈/

Two-step proof:

On exit:

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 162 -

δ≥ ∀ ∈Claim 1. is never too small: [] (,)d d v s v v V

 Proof: There exists a path from s to v of length ≤ d[v].

By Induction:
Suppose it is true for all vertices thus far discovered (an grre d d ey).

 is discovered from some adjacent vertex being handled.uv

→ = +[] [] 1d v d u
δ≥ +(,) 1us
δ≥ (,)s v u v

s

since each vertex is assigned a value exactly once,
it follows that o []n exit, (.,)d v s v

v
v V
d

δ≥ ∀ ∈

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 163 -

BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: d[u] = shortest distance δ [u] and
π [u] = predecessor of u on shortest paths from s to each vertex u in G

for each vertex u∈V [G]
d[u]←∞
π [u]← null
color[u] = BLACK //initialize vertex

colour[s] ← RED
d[s]← 0
Q.enqueue(s)
while Q ≠ ∅

u← Q.dequeue()
for each v ∈Adj[u] //explore edge (u,v)

if color[v] = BLACK
colour[v]←RED
d[v]← d[u]+1
π [v]← u
Q.enqueue(v)

colour [u]←GRAY

: [] (,) 'disco rvered' (o gr)eyred d v s v v Vδ← ≥ ∀ ∈

(,) 1s uδ≥ + (,)s vδ≥

δ≥ ∀ ∈Claim 1. is never too small: [] (,)d d v s v v V
 Proof: There exists a path from s to v of length ≤ d[v].

s
u v

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 164 -

δ≤ ∀ ∈Claim 2. is never too big: [] (,) d d v s v v V
Proof by contradiction:

δSuppose one or more vertices receive a value greater than .d

δLet be the vertex with minimum (,) that receives such a value.s dv v

Let be 's predecessor on a shortest path from to .u sv v

s
u v

Suppose that is discovered and assigned this d value when vertex is dequeued.v x

= −[] [] 1d x d v

δ= −[] (,) 1d s vu

δ <(,) []vs d v

 vertices are dequeued in increasing order of Reca v .ll: alued
→ u was dequeued before x.

δ→ = + =[] [] 1 (,)dvd u s v

x δ→ − < −(,) 1 [] 1v d vs

→ <[] []d u d x

Then

Contradiction!

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 165 -

Correctness

δ≥ ∀ ∈Claim 1. is never too small: [] (,)d d v s v v V

δ≤ ∀ ∈Claim 2. is never too big: [] (,) d d v s v v V

δ⇒ = ∀ ∈ is just right: [] (,) d d v s v v V

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 166 -

Progress? Ø  On every iteration one vertex is processed (turns gray).

BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: d[u] = shortest distance δ [u] and
π [u] = predecessor of u on shortest paths from s to each vertex u in G

for each vertex u∈V [G]
d[u]←∞
π [u]← null
color[u] = BLACK //initialize vertex

colour[s] ← RED
d[s]← 0
Q.enqueue(s)
while Q ≠ ∅

u← Q.dequeue()
for each v ∈Adj[u] //explore edge (u,v)

if color[v] = BLACK
colour[v]←RED
d[v]← d[u]+1
π [v]← u
Q.enqueue(v)

colour [u]←GRAY

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 167 -

End of Lecture

March 27, 2012

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 168 -

Ø  The shortest path problem has the optimal substructure property:
q  Every subpath of a shortest path is a shortest path.

Ø  The optimal substructure property
q  is a hallmark of both greedy and dynamic programming algorithms.

q  allows us to compute both shortest path distance and the shortest paths
themselves by storing only one d value and one predecessor value per
vertex.

Optimal Substructure Property

u v s

shortest path

shortest path shortest path

How would we
prove this?

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 169 -

Recovering the Shortest Path
For each node v, store predecessor of v in π(v).

s
u v

Predecessor of v is

π(v)

π(v) = u.

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 170 -

Recovering the Shortest Path

Precondition: and are vertices of graph
Postcondition: the vertices on the shortest path from to have been prin

P

if then

RINT-PATH(, ,)

pr

print

ted in o

else

int
if

rd

then [] I
"

e

L

r

N

s v G
s v

s

v

v

s
s

G

v

π

=

=

else
no path from" "to" "exists"

PRINT-PATH(, , [])
print

s v

G s v
v

π

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 171 -

BFS Algorithm without Colours

BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: predecessors π [u] and shortest
distance d[u] from s to each vertex u in G has been computed

for each vertex u∈V [G]
d[u]←∞
π [u]← null

d[s]← 0
Q.enqueue(s)
while Q ≠ ∅

u← Q.dequeue()
for each v ∈Adj[u] //explore edge (u,v)

if d[v] = ∞
d[v]← d[u]+1
π [v]← u
Q.enqueue(v)

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 172 -

End of Lecture
&

End of Course

March 29, 2012

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 173 -

Single-Source (Weighted) Shortest Paths

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 174 -

3

Shortest Path on Weighted Graphs

Ø BFS finds the shortest paths from a source node s to
every vertex v in the graph.

Ø Here, the length of a path is simply the number of edges
on the path.

Ø But what if edges have different ‘costs’?

s

v

(,) 3s vδ = (,) 12s vδ =

2 s

v
2

5 1
7

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 175 -

Weighted Graphs

Ø  In a weighted graph, each edge has an associated numerical
value, called the weight of the edge

Ø  Edge weights may represent, distances, costs, etc.

Ø  Example:
q  In a flight route graph, the weight of an edge represents the

distance in miles between the endpoint airports

ORD
PVD

MIA
DFW

SFO

LAX

LGA

HNL

849

80
2

1843

1120
1233

337 2555

1205

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 176 -

Shortest Paths
Ø  Given a weighted graph and two vertices u and v, we want to find

a path of minimum total weight between u and v.
q  Length of a path is the sum of the weights of its edges.

Ø  Example:
q  Shortest path between Providence and Honolulu

Ø  Applications
q  Internet packet routing

q  Flight reservations

q  Driving directions
ORD

PVD

MIA
DFW

SFO

LAX

LGA

HNL

849

80
2

1843

1120
1233

337 2555

1205

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 177 -

Shortest Path: Notation

Ø  Input:

0 1 1
1

Weight of path , ,..., (,)
k

i ik
i

p v v v w v v−
=

=< > =∑
Shortest-path weight from to :u v

δ (u,v) = min{w(p) : u →
p

→v } if ∃ a path u →→v,
∞ otherwise.

⎧
⎨
⎪

⎩⎪

Shortest path from to is any path such that () (,).u v p w p u vδ=

Directed Graph (,)G V E=

 Edge weights w :E →

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 178 -

Shortest Path Properties
Property 1 (Optimal Substructure):

 A subpath of a shortest path is itself a shortest path

Property 2 (Shortest Path Tree):
 There is a tree of shortest paths from a start vertex to all the other vertices

Example:
 Tree of shortest paths from Providence

ORD
PVD

MIA
DFW

SFO

LAX

LGA

HNL

849

80
2

1843

1120
1233

337 2555

1205

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 179 -

Shortest path trees are not necessarily unique

Single-source shortest path search induces a search tree rooted at s.

This tree, and hence the paths themselves, are not necessarily unique.

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 180 -

Optimal substructure: Proof
Ø  Lemma: Any subpath of a shortest path is a shortest path

Ø  Proof: Cut and paste.

 Now suppose there exists a shorter path x →
′pxy

→ y .

Then () ().xy xyw p w p′ <

Construct p :′

Then () () () ()ux xy yvw p w p w p w p′ ′= + + () () ()ux xy yvw p w p w p< + + ().w p=

So p wasn't a shortest path after all!

Suppose this path is a shortest path from to .p u v

Then (,) () () () ().ux xy yvu v w p w p w p w pδ = = + +

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 181 -

Shortest path variants

Ø Single-source shortest-paths problem: – the
shortest path from s to each vertex v.

Ø Single-destination shortest-paths problem: Find a
shortest path to a given destination vertex t from
each vertex v.

Ø Single-pair shortest-path problem: Find a shortest
path from u to v for given vertices u and v.

Ø All-pairs shortest-paths problem: Find a shortest
path from u to v for every pair of vertices u and v.

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 182 -

Negative-weight edges
Ø OK, as long as no negative-weight cycles are reachable

from the source.
q  If we have a negative-weight cycle, we can just keep going

around it, and get w(s, v) = −∞ for all v on the cycle.

q But OK if the negative-weight cycle is not reachable from the
source.

q Some algorithms work only if there are no negative-weight edges
in the graph.

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 183 -

Cycles

Ø Shortest paths can’t contain cycles:

q Already ruled out negative-weight cycles.

q Positive-weight: we can get a shorter path by omitting the cycle.

q Zero-weight: no reason to use them à assume that our solutions
won’t use them.

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 184 -

Shortest-Path Example: Single-Source

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 185 -

Output of a single-source shortest-path algorithm

Ø For each vertex v in V:

q d[v] = δ(s, v).

² Initially, d[v]=∞.

² Reduce as algorithm progresses.
 But always maintain d[v] ≥ δ(s, v).

² Call d[v] a shortest-path estimate.

q π[v] = predecessor of v on a shortest path from s.

² If no predecessor, π[v] = NIL.

² π induces a tree — shortest-path tree.

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 186 -

Initialization

Ø All shortest-path algorithms start with the
same initialization:
INIT-SINGLE-SOURCE(V, s)

for each v in V
do d[v]←∞

π[v] ← NIL

d[s] ← 0

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 187 -

Relaxing an edge

Ø  Can we improve shortest-path estimate for v by first going to u
and then following edge (u,v)?

RELAX(u, v, w)

 if d[v] > d[u] + w(u, v) then

 d[v] ← d[u] + w(u, v)

 π[v]← u

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 188 -

General single-source shortest-path strategy

1.  Start by calling INIT-SINGLE-SOURCE

2.  Relax Edges

Algorithms differ in the order in which edges are
taken and how many times each edge is relaxed.

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 189 -

Example 1. Single-Source Shortest Path
on a Directed Acyclic Graph

Ø Basic Idea: topologically sort nodes and relax in linear
order.

Ø Efficient, since δ[u] (shortest distance to u) has already
been computed when edge (u,v) is relaxed.

Ø  Thus we only relax each edge once, and never have to
backtrack.

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 190 -

Example: Single-source shortest paths in a directed
acyclic graph (DAG)

Ø  Since graph is a DAG, we are guaranteed no
negative-weight cycles.

Ø  Thus algorithm can handle negative edges

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 191 -

Algorithm

Time: ()V EΘ +

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 192 -

Example

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 193 -

Example

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 194 -

Example

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 195 -

Example

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 196 -

Example

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 197 -

Example

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 198 -

Correctness: Path relaxation property

0 1 0Let , , . . . , be a shortest path from .k kp v v v s v to v=< > =

0 1 1 2 -1If we relax, in order, (,), (,), . . . , (,), k kv v v v v v

even intermixed with other relaxations,
then [] (,).k kd v s vδ=

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 199 -

Correctness of DAG Shortest Path Algorithm

Ø Because we process vertices in topologically sorted
order, edges of any path are relaxed in order of
appearance in the path.

q àEdges on any shortest path are relaxed in order.

q àBy path-relaxation property, correct.

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 200 -

Example 2. Single-Source Shortest Path on
a General Graph (May Contain Cycles)

Ø  This is fundamentally harder, because the first paths we
discover may not be the shortest (not monotonic).

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 201 -

Dijkstra’s algorithm (E. Dijkstra,1959)
Ø Applies to general, weighted, directed or

undirected graph (may contain cycles).

Ø But weights must be non-negative. (But they
can be 0!)

Ø Essentially a weighted version of BFS.
q  Instead of a FIFO queue, uses a priority queue.

q Keys are shortest-path weights (d[v]).

Ø Maintain 2 sets of vertices:
q S = vertices whose final shortest-path weights are

determined.

q Q = priority queue = V-S.
Edsger Dijkstra

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 202 -

Dijkstra’s Algorithm: Operation

Ø  We grow a “cloud” S of vertices, beginning with s and eventually
covering all the vertices

Ø  We store with each vertex v a label d(v) representing the distance of v
from s in the subgraph consisting of the cloud S and its adjacent vertices

Ø  At each step
q We add to the cloud S the vertex u outside the cloud with the smallest

distance label, d(u)

q We update the labels of the vertices adjacent to u

S

7

9

∞

∞11

1

4

s

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 203 -

Dijkstra’s algorithm

n  Dijkstra’s algorithm can be viewed as greedy, since it always
chooses the “lightest” vertex in V − S to add to S.

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 204 -

Dijkstra’s algorithm: Analysis

n  Analysis:
n  Using minheap, queue operations takes O(logV) time

()O V

(log)O V () iterationsO V×

(log)O V () iterationsO E×

Running Time is (log)O E V→

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 205 -

Example

White ⇔ Vertex ∈Q =V - S
Grey ⇔ Vertex = min(Q)

Black ⇔ Vertex ∈S, Off Queue

Key:

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 206 -

Example

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 207 -

Example

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 208 -

Example

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 209 -

Example

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 210 -

Example

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 211 -

Djikstra’s Algorithm Cannot Handle Negative Edges

3

2

-2

s

1

x y z

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 212 -

Correctness of Dijkstra’s algorithm

Ø  Loop invariant: d[v] = δ(s, v) for all v in S.
q  Initialization: Initially, S is empty, so trivially true.

q  Termination: At end, Q is empty àS = V à d[v] = δ(s, v) for all v in V.

q Maintenance:
² Need to show that

v  d[u] = δ(s, u) when u is added to S in each iteration.
v  d[u] does not change once u is added to S.

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 213 -

Correctness of Dijkstra’s Algorithm: Upper Bound Property
Ø  Upper Bound Property:

1. [] (,)d v s v v Vδ≥ ∀ ∈

•  Proof:
By induction.

 [] (,) immediately after initialization, since
[] 0 (,

Base Cas :

[]

e
)

d v s v v V
d s s s
d v v s

δ
δ

≥ ∀ ∈
= =
= ∞∀ ≠

δ≥ ∀ ∈Suppose
Inductive Step:

 [] (,)d x s x x V

(,) (,)s u w u vδ≥ +

(,)s vδ≥

If [] changes, then [] [] (,)d v d v d u w u v= +

Suppose we relax edge (,).u v

2. Once [] (,), it doesn't changed v s vδ=

A valid path from s to v!

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 214 -

Correctness of Dijkstra’s Algorithm
When is added to Clai , [] (m): ,u S d u s uδ=

Let be first vertex in on shortest path to y V S u−
Let be the predecessor of on the shortest path to x y u

 [] (,) when is added toCl : .aim d y s y u Sδ=
Proof:

[] (,), since x .d x s x Sδ= ∈
(,) was relaxed when was added to x y x S [] (,) (,) (,)d y s x w x y s yδ δ→ = + =

Handled

Let be the first vertex added to
such tha
Proof by Con

t [] (,) when is added.
tradiction: u S

d u s u uδ≠

Optimal substructure
property!

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 215 -

Correctness of Dijkstra’s Algorithm
Thus [] (,) when is added to .d y s y u Sδ=

[] (,) (,) [] (upper bound property)d y s y s u d uδ δ→ = ≤ ≤

But [] [] when added to d u d y u S≤

Thus [] (,) (,) []!d y s y s u d uδ δ= = =

Thus when is added to , [] (,)u S d u s uδ=

There is a shortest path to such that the predecessor of []
Conse

 whe
quences

n is added to .
:

u u u S u Sπ ∈

π []u

=2The path through can only be a shortest path if [] 0.y w p

Handled

Last Updated: 12-03-22 10:12 AM
CSE 2011
Prof. J. Elder - 216 -

Correctness of Dijkstra’s algorithm

Ø  Loop invariant: d[v] = δ(s, v) for all v in S.
q Maintenance:

² Need to show that
v  d[u] = δ(s, u) when u is added to S in each iteration.

v  d[u] does not change once u is added to S.

δ=Thus once [] (,), it will not be changed.d v s v

 can only decRelax(u rease],v,w) [.d v
δ≥upper bound prBy the , operty [] (,).d v s v

ü
?

